
AD—A066 533 G&LRAL ELECTRIC CO SUNNYVALE CA COMMAND AND INFORMA .ETC FIG ~I2SOFTWARE DATA BASELDE ANALYSIS. (U)

I*CLASSIFIED
N T MAT SUMOTO

RADC— TR—7 9—6 7
F30 fl 2—78—c—0022

I

~~~~ fI ~~~~



ARE DATAMrIOSL!
~~~~~~~~~~~~~~ . :~~~

$sctñc/C & I Syst.ms 4
~~~~~~ ‘1

4~~~~~
.

Dr. 0. L. Fish V
M. 1.~ bts,amto

I C..3

York i34



_ _ _ _ __ _ _ _ __ _ _ _  
•IfIl~kb~~~~~ 1AIC Z~foi~ItLse Of ftc. S) an~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~~~~~~~~~~~~~~~~~~~~~

—It~~~~ ~~~~~do~~.ti o* $Irvie . ($flS) ~~~~t $118

Ic. isc1~4is~ for.I ~~ ~~~~~~~~
_____ is .p xovsd for p~Ib1tc~~~~~~~~

.‘$_. ~~~~~~

~~~‘i1~L C. 
~~~~~~~~~~~~~~~~, cSiOU~~~ USA?

~ d.f , 1sf or~~tj__ 8cii~~Iá Divistob

P* Til CMI
~

EER
~~~~2 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /
V JØ~~,,•~~~$5 j

Mtin$ cht.f~ fr1~~s Offi .

it y~~r $*(sss hU~~~~Si~ t it yew wab to ~~ r~~~~e~ frau the RAEC$1i. list, .r U the .~drsN.. is no tc er .mp1~~~d by your or~~~ia.tiew,pi.IsS~*Ifl MDC (liii), Cffltt.s • an .sy DM1. This vii i suist i~ insststa *s1~~ s eurr~~~ ssW* ti.t.

~~ ~ t tet~Th thi~~~~~, ~~~~~~ Or Ostro ~.

L I

_ _ _ _

MISSION
- .

I Ro~~ Air DeveJ~~~it Center
I.
I -

~~

~~ — -~~~~~~ ~~~~~~ zIissx~~. — d ad~~~~~
— — La ~~~~~~ ~~~~~~ ~~ç. ~ ‘) a 1tLa , d Is .~~s C’ ar.sa ~~ j a~b stias .~iaw~I

~~~ Ia~~UL~~~~. a. pI~~1psZ au~~ L~~1 d I~~ az.u
s1so~~~~~ stIo — ~~dof — out aor~~~ou objout , L~~~UI1ouew

I ~~~~ ~~Z1•seIou d _ 
_ _I 1 1 .  ~~~~~stI~~, ~~1Ld stit. ~1wc, ~~a~u~ ew

~~~ iZ~~~ cøiC ~~UabI11tV. iataIaüIl tp ~~
—.

I _I ~~

r~-
~~~~~ ~~~~~~~~~~~~~ 

.— ________________________________________ — ~~~~~~~~~~~~~~~~~~~~~~~ -

UNCLASSIFIED
SECU V CI.. S IF I CATIO N OF THIS PAGC (Wh.n 0.1. Enl.t•d)

/ / ~ ~~ ~~~~~ Ih  •~~~~~~i,~~ i mai ~~ READ INSTRUCT IONS
,~~ rOR . ii v~ vM u~ u ~ u iut ~ ‘~~~s’~~ BEFORE COMPLETING FORM

I. RIPO NU 2. GOVT ACCESSION NO. 3 RECIP i ENT ’ S  CATA L OG NUMBER

RADC R-79—67 ____________________________
~~~~~~~~~ f. YI LE(wd Subtitl.) 9. .I $-SP- ...!F ~~,R T  A W U -5.8

-
(‘/ Final Technical Report .

(~ 9F1~JARE DATA BASELINE ANALYSIS ~ ! 14 No~ 77 — 17 Nov 78.
¼,. -

,, ~~~~~
_____~~~~~~~~~~~~~~ . -- I. P E ~~~~~~~~~ e-.. nir~~~

-
___ N/A
9.—AbITHOR(.) S. C O N T R A C T OR GRANT NuMBE RII)

_ _ _
_ _

/7~ ~~~~~~~~~~~~~~~~~~~~
—

___________ NAME AND ADDRESS 10.
~~~~~~~~~~~~~~~~~~~~~~~~ 

TAS K

VGeneral Electric7Command & Information flystems
450 Persian Drive f, 62702F
Sunnyvale CA 94086 55812005

I I . CONT ROL L INGO FFI CE NAME AND AD DRESS 12. REPORT DATE

/ •
‘ Marc~~.~~~79 / / ~~~~~~~~~~~~~

Rome Air Development Center (ISIS) ~~ N M ~ EnOr ~~AGE s ,~ ,, - I c
Griff iss  AFE NY 13441 74 ~~ — b

14, MONITORING AGENC Y NAME a AOD RESS (If diif.r.n I from Con lrolfl ng Of f i c e)  IS. SECURITY CLASS.  (of chic r.po fl) - —

-
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ /Same 

~

- . UNCLASSIFIED — —15.. D E C L A S S I F I C A T I O N DOW N O RAD I N
SCHEDULE

f ’ N/A ——IS. DISTRIBUTION STATEMENT (of fbi. R.porc) ’~~

Approved for public release; distr ibution unlimited .

I l . DISTRIBUTION STATEMENT (of lb. .b.tr.cf .nte,.d in Block 20. if diff .renc from R.po,I) ’

Same

16. SUPPLEMENTARY NOTES
RADC Proj ect Eng ineer : James V. Cellin i (ISIS)

19. K E Y W O R D S (Conlinu. on reo.r a. .id. If nec .aaa ry mid iden l i fy by block ncrn~b.r)

Software error baselines linear regression s t ructural analysis
software AID analysis
software errors software analysis
software re l i ab i l i ty error dis t r ibut ions
software error typology data col lect ion

A B S T R A C T (Contino. on r.v.re. aid. if n.c....ry and identify by block n~rn.b.c)

The subject report summarizes the results of an analysis of software error data
supplied by the Informat ion Sciences Division of Rome Air Development Center
(R.ADC) . These data consisted of the software problem histories of f ive large—
sca le so f tware de~-elopments , i nd iv idua l l y col lected by t~ie de~ elopmer~t con—

V t ractors and supplied to RADC . The problems were c lass i f i ed by a previously
developed error typology . The purpose of the anal ysis wos to inves t iga te the
existence of any consistencies in the occurrence of errors u t i l i z i n g the f ive — — -

~~~ 
FORM ~~~~I1L~ 1 J A N 73 ~~~ UNCLASSIFIED

S E C U R I T Y  C L A S S I F I C A T I O N  OF T H I S  PAGE (W~,en P.r. Fnc ro’~

‘I 
_ _ _ _  _ _ _ _I~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . --. _____‘•

~~~~ 

T~ T. —

~~~~~~~~~~~~~~~~ 

,

~~~~~
______________— —--—-----~~~~~~ ~~~~ — - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘
~~~
‘“

~~ ~~~~~~~~~~~~~~~~ .-
- .. - - ~~~~~~~~~~~~

- I
UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A TI O N OF T H I S PAG E(Wb.n Oat. Ent.i.d)

~~~~ L~_ - .-— 
~development efforts. The analysis included consideration of the error
typology, rate of occurrence, time of occurrence , time to fix, and module size.
Results of the analysis isolate methodological problems in the gathering of
software error data and suggest that positive incentives be provided to
development team members involved in the data collection effort.

I

I .

1-
~~~~~~~~~~~~~~te Sect~~~~~

~~~~~ Sect 05 
~~

I ~~~~~~~~~~~~~~~~~~~ —.-‘ .._4 
,,-

- .: 
,

- . 

“I.
’

UNCLASSIFIED

5E~~ uRI ’TY c L A s s I r I : A 1 ’ IoH PF “ HIS P A GIT’Iti..,, f l o r a  i~H l t ’,~~d)

~~~.. ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ,~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ , ‘:T...~.’ ’$~~ ~~~~~~~~



~~~~~
- ~TT~~ - 

. ‘

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS . . . . . 111LIST OF TABLES . . . . . . . . . . .  . . . . . . . . lv

Section Page

1.0 INTRODUCTION . . . .    . . .     . . . . . . . . . . 1—1
1.1 Report Overview  . . . . . . . ..... 1— 1
1.2 Study Perspective   . . . . . . . . . . 1—2
1.3 Suninary of Findings . . . . . . . . . . 1—7

2.0 THE DATA BASE  ...2— 1

2.1 Parameters of the Analysis . . .  .  .  .  .  .  2—1
2.1.1 Software Parameters 2—1
2.1.2 Problem Parameters  .  .  2—5

2.2 The Project Histories 2—8
2.2.1 Project 3  2—10

2.2.2 Project 2 2—11

2.2.3 Project 1 2—14
2.2.4 Project 5 2—14

2.2.5 Project 4 2—19
2.3 Limi tations 2—24

3.0 ANALYSIS OF THE DATA  3—1

3.1 Error Rates 3—1

3.1.1 Effect of Module Size . 3—2

3.1.2 Effect of Module Type 3—2

3.1.3 Effect of Time 3—6
3.2 Distribut ion of Problems 3—6

3.3 Time-to-Fix 3—21

3.3.1 Effect of Module Type 3—21

3.3.2 Effect of Error Type 3—25
.1 3.4 Cross Project Validity 3—25

I

~~ .__ l ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
—.

______ - 
‘



-

F:

TABLE OF CONTENTS (Continued)

Section Page

4.0 FUTURE CONSIDERATIONS FOR RELIABILITY DATA
COLLECTION 4-I

REFERENCES R-i

APPENDIX A A-i -4

I

.
~~

,~k l

~

11 

ii

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~ 
,. - .

- ___

- ~~~~~~~~~~~~~~~~~~~~~~~~
—-

~~~~~~~
—

~~~~~~
—

LIST OF ILLUSTRATIONS

Figure
Number Page

1.2-1 Project 3 Number of Problems as a Function of
Module Size 1—9

1.2-2 Project 1 Number of Problems as a Function of
Module Size 1-9

2.1.1-1 Rationale for Functional Categorization 2—4
3.1.3-1 Project 3 Total Problems by Month 3-7
3.1.3-2 Project 2 Total Problems by Month 3-8
3.1.3-3 Project 1 Total Problems by Month 3-9
3.1.3-4 Project 5 Total Problems by Month 3-10

3.1.3-5 Project 4 Total Problems by Month 3-11
3.2-1 Problem Distribution by Project 3-20
3.2-2 Project 3 Distribution of Problems by Module Type 3-22

3.2-3 Project 1 Distribution of Problems by Module Type 3-23

3.3.2-1 Time-to-Fix by Problem Type 3-26

A-i AID Tree for Software Problems A-2

4

1
1 1 1

.1

~~~A ~~~~~~~~~ -~~~-- iø~s~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~. t~~-~~~ ~~~~~ ~~~~~~~~~~~~~~



_ _ _  ~~~~~~~~~~~~~~~~~~
-
---- -. - -

LIST OF TABLES

Table
Number Page

1.2— 1 Uses of Baseline Information  1—6
2.1.1-1 Functiona l Typolog,y of Software Modules 2-3
2.1.2- 1 TRW Typology of Softwa re Problems 2-6
2.1.2—2 Criticality of Software Problems 2—9
2.2.1-1 Project 3 Software Modules 2-12
2.2.1-2 Project 3 Software Problems 2-13
2.2.2-1 Project 2 Software Modules 2-15

2.2.2-2 Project 2 Software Problems 2-16
2.2.3-1 Project 1 Software Modules 2-17
2.2.3-2 Project 1 Software Problems 2-18

2.2.4-1 Project 5 Software Modules 2-20
2.2.4-2 Project 5 Software Problems 2-21
2.2.5-1 Project 4 Software Modules 2—22
2.2.5-2 Project 4 Software Problems 2-23
2.3-1 Contents of Software Problem Data Base 2-25
3.1.1-1 Problem Rates 33

3.1.2-1 Project 3 Correlation of Number of Problems with Module Type 3-4

3.1.2-2 Project 1 Correlation of Number of Problems with Nodule Type 3-5

3.1.3-1 Project 3 Month vs. Problem Type 3-12
3.1.3-1 Continued 3-13
3.1.3-2 Project 2 Month vs. Problem Type 3-14
3.1.3-2 Continued 3-15

3.1.3-3 Project 1 Month vs. Problem Type 3—16
3.1.3-4 Project 5 Month vs. Problem Type 3-17
3.1.3-5 Project 4 Month vs. Problem Type 3-18
3.1.3-5 Continued 3-19
3.3.1-1 Time-to-Fix by Module Type 3-24

3.4-1 Subsystem 1 3-27

3.4—2 Subsystem 2 3-28
3.4-3 Subsystem 3 3-29

4.1-1 Parameters for Data Collection 4-2

A-l AID Parameters A-3

A- i Continued A-4

L ~~~~~~~~~
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _  ~~~~~~~~~~ 
~~~~~~~ ~~~~



r 

~~~~~~~~~~~~~~~~~~~~ - . 
-

Evaluation

The need for reducing the cost and increasing the productivity of

software within the Air Force still exists. This task involved various

areas to investigate. It was necessary to surface the results of

particular previous efforts in order to coordinate all the valuable

inform ation from them toward these needs. Particularly, this effor t

was under taken to analyze the results of five software error data

collection projects in an atteript to develop quantitative baselines.

It fits into the .joals of RADC Ti30—R5A , software Cost Reduction; Sub

Thrust software Data Collection and Analysis. The report presents the

resul ts of the anal~’sis of uata from different types of large DOD

sottware develop~rent projects. The value of tnis effort is that it

will oe used to support current m odel prediction and quality

creasurelnent projects as well as be evaluated with the goal of

developing useful maselines. It has been significant in br inging forth

the areas that require in—depth development in order to arrive ’ at

these baselines.

• 1
JAMES V. CELLI N I , Jr
Projec t En g ineer

31

V

- — ‘
~~~~~~~~:‘~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
~~ 

. - J



______________________________ — - -- —-c: - — —- --— --- -i.-- -H .- - .  

~~~~~~~~~~~~~~ ~—.--..- - . . , . . —-

1.0 INTRODUCTION

1.1 REPORT OVERVIEW
This report summarizes the results of an analysis of software error data
supplied by the Information Sc iences Div is ion of Rome A ir Development Center
(RADC). The analysis was performed for RADC under contract number F30602-78-

C-0022. The software error data consisted of the software problem histories

of five large-scale software developme~its. which were individually collected
and provided to RADC by five software development contractors, ([THAT76},
[wrLH77J. [FRrM77], [8AKw 77] , CRYEP77])*.

The major objectives of the study were to utilize these software development
problem histories to determine if certain characteristics of the software
exhibit consistent ralationships wi th the corresponding problem histories and
to determine the validity and applicability of these relationships . In
addition , reconiiiendations for future analysis which woul d further the establish-

ment of these baselines , were also expected.

The app roach taken was as follows :
(1) Establish a set of functional categories into which elements of a

softwa re system coul d be grouped. The ca tegories presented in
{THAT76]*were used as a starting point.

(2) Utilizing these functional categories , classify the various modules
of each of the software systems provided in the error data base.

(3) Perfo rm statistical analyses to determine if consistent relation-
ship s or basel ines can be es tabl i shed between charac ter ist i cs of
the software and measures of its reliability .

(4) Determine the validity of the resul ts by assessing their applic-
ability to erro r data from other software developments.

I I

\

This approach is described in more detail in the report and definitions for

*See References following page 4-3.

1— 1

-. _c~~~’~~~~ ~~~

many of the measures of rel iability and characteristics of the software are
provided. The constraints imprsed by the data available is also described.

The report is organized as follows : Section 1 provides an overview describing
the objectives of the study, the general approach , the perspective of the study,
and the general findings. Section 2 provides a description of the data avail-
able for analysis. This description includes a brief discussion of the soft-
ware developments from which the data came, as well as the character i stics of
the software and types of error data provided. Section 3 contains a descrip-
tion of the analyses performed and the detailed results. A discussion of the
validity of the results is also provided in this section . Section 4 suggests
what data can be collected in the future to assist in the establishment of
error baselines. Appendix A-i provides a structural analysis using the AID
(Au tomatic ~nteraction Detector) techni que to determine if the method could
provide some insight into the effect of certain parameters on the number of
errors wh ich occur.

1.2 STUDY PERSPECTIVE
In the acquisition of a new software system, one of the major problems facing

the acquisition manager is the prediction and assessmen t of software qual ity.
Among the many factors which contribute to the measurement of software quality ,

reliability is one of the most important [MCCJ77]* . Until recently, no tech-

niques were available to quantitatively measure software reliability . Reli-
ability was largely a subjective measure provided by the users of the system
and was not readily comparable to the reliabilit y of other functionally
s imi lar software systems. A di rect conse quence of thi s vo id was often to
delay the real ization tha t a reliability problem existed until it was too late
to achieve any substantial improvement except for the correction of the obvious ,

high-priority software problems. The users were often left to contend with

less serious software problems wi th workaround procedures.

p The occurrence of software errors is a primary indication of unreliability ; ¾

but , reliability is only one of a number of factors which contribute to the over—
al l measure of software quality . To a certain degree, the contribution which

these fac tors make to software qual ity is also measure d by the number of errors ,

*See References following page 4-3.

1-2

—
~~~~

-. -.~—— - ---
~~~ -—— L~.. - - ~~~~~~~~ 

.

_ _ _ _ _ _ _ - -— . - ~~~~~~~~ — -
~~~~

- —-- — —

indicating that the error characteristics of softwa re are an extremely impor-
tant indicator of the overall quality. However , the effect of errors is most
clearly indicated by the reliability factor and, as a resul t, it is receiving
considerabl e attention in RADC ’s study efforts .

A concerted effort is now being made to develop a concept of software rel i-
ability. However , a reori entation in perspective must be made by individuals
familiar wi th hardware reliability concepts . There are significant differences
which distinguish hardware and software when visualizing the reliability
discipl ine. At the outset, softwa re does not fail like hardware. A hardware
fai lure indicates that something has changed states - from a working sta te to
a nonworking state. Rather , in the software domain , the condi tion equivalent
to a hardware failure is the occurrence of an error which is analogous to a
hardware design error. For a given set of initial conditions , software will
always accomplish the identical set of operations producing the identical

resul ts each time it is executed. This of course is not necessarily true of

hardware and imparts a diffe rent meaning to the basic measure of reliability.
Another important distinction is that in correcting a hardware failure , the

system is normally restored to its initial configuration, while the correction
of a softwa re error produces a different configurat ion which will exhibit
different properties.

The concept of software reliability which is used in this study which is
supported by past experience can be simply stated as:

The extent to wh ich a program or collec tion of funct ionally related
programs can be expected to perfo rm its intended function with required
precision .

With this basic definition of software reliability , two fundamental approaches
to its practical interpretation need to be considered. The simplest of these ,
which is appl icable to individual programs and to some extent software systems,

is a measure characterized by the Mean Time Between Error (MTBE) which is
analogous to the MTBF measure of hardware reliability. For large software

1-3



-

~~~~~~~~~~

systems as are typical of many Air Force applications , the concept of Mission
Rel iab ility has more s ignif icance than MTBE, although a definite interre-
lationship eAists between them. Mission Reliability is a measure of the
probability that, once started, a stated operational mission can be completed
successful ly. An important point here is “completed successfully ” and does
not precl ude the occurrence of certain types of software errors. This two
level defini tion of reliability has been taken by others [LLOD77]* but di ffers
by not requiring reliable software to be fault-free. Mission reliability is
normally more meaningful in tactical and strategic systems where specific
mission objectives must be achieved.

Al though detected errors are an indication of software unreliability , a pro-
gram w ith many known errors can be rel iable and conversely one with no known
errors can be extremely unreliable. It must be realized that the reliability
of a program or software system i s not only a function o~ the number of latent
errors existing in it but also of the way in which it is used. Thus software
rel iability i s a function of the number of errors , the severity and location
of those erro rs, and the way in which the system is being used [MYEG76]*.

Attempts to develop a comprehensive theory of software reliability which will
allow accura te prediction of software error chara cteris tics , software avail-
ability, and other similar measures are beginning to show resul ts. An
essent ial contribution to the furtherance of thi s theory i s the continued
study of softwa re error character isti cs such as that descr ibed in Sec tion 3
of this r~port.

The idea of ach iev ing an env i ronment in wh ich rel iable software is a normal
occurrence is no longer unrealistic but reliability considerations must play
an important part in the mainstream of the development activity . What is
needed i s a rel iable method w ith whi ch a software system can be evaluated at
appropriate stages during its development. In a previous study ETHAT76]*
a large set of software error data was collected and analyzed from four

*See References following page 4-3.

1-4

_________ - —-- -~~~~
~~~ 2’ - - - ~~ 

— --- — 

-



- 
—;~.~- .-. 

— — 
~~~~~~~~~~~~~~~~~~~~~~ 

. .
- -

- --——-..—-—- —

separate software development projects. The initial work performed during

that study and other sources of softw are error data have been used as the basis
for the continued development and refinement of software error predi ction
techniques contained in this report.

The ul timate goal in this area is to develop a set of error baselines , in the

form of regress ion equat ions, which accurately predict the expected error
behavior of the software segments or modul es within a functional category when
estimated or actual val ues for the characteristics are input. With error base-
lines that have been val i dated against historical data, it will then be possible

to predict , at the start of a development , the number of errors which would be

typical of a module wi thin a specific functional category. As the development

of the module progresses , estimated characteristics coul d then be replaced by
actua l values to refine the prediction.

This informatior’ woul d be valuable in planning the amount of effort required

for tes ting. It woul d also allow assessmen t during the deve lopment of how well
the testing effort is progressing. Problem report trends can be compared wi th

predi cted values and a change in emphas i s or realloca tion of resources might
be enacted. Finally, the error rate expected past del ivery will impact the
amount of resources planned during the operations and maintenance phase.

Table 1.2-1 summarizes the use of the error baseline information.

In addition to the error rates, the types of errors expected and expected
time to fix statistics that were deri ved from our analysis are valuable. If
certain types of errors can be expected from particular types of modules , test

plans and strategies can be generated to emphasize the detection of those

types of errors . Standards and conventions can be es tabli shed wh ich are
oriented toward the prevention of these particular types of errors. Plans
for software operations and maintenance personnel skill requirements and

training coul d also be infl uenced by the types of errors expected.

S

The time to fix estima tes assist in planning the testing effort. It also
provides indications of the response time to errors during operations and

maintenance and therefore overall system availability .

1-5

- _ _ _ _ ~~,— --- .- —- -- --- _ _ _ _ _ _ -- --‘--

.—
~-
-— ~ r~

-.---_-f r .
~~~
‘-.---—-——-‘--‘. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

-~~ - =-.
~~~



- 

,. ii~~~~ -

-

•1

Table 1.2-1
Uses of Baseline Information

INFORMATION DEVELOPMENT PHASE OPERATION AND
FROM BASELINE MAINTENANCE

ANALYSIS PLANNING CONTROL PHASE

Error Rates . Test Effort . Test . Expected Reliability
F 

. Throughness • Required Resources

• Identified
Areas of Emphasis

Distribution • Test Plans • Standards and • Expected Reliability
of Errors and Strategy Conventions

• Personnel Skill Mix

• Training

Time to Fix • Test Effort • Operations Response

• Required Resources

• System Availability

1-6

_ _ _ _ _ _ _ _ _ _ _ _  ~~



7 

- - -
_

-
_

- -

~~~~~~~~~~~ 

- ,-

The data and results available from this study and previous efforts do not
yet allow these types of uses of the information to be made with complete
confi dence. However , consideration should be given to this type of informa-
tion for planning. -

1.3 SUMMARY OF FINDINGS
The conclus ions that can be drawn from thi s study were severe ly constra ined
by the available data. The impact is discussed in detail in section 2. In

genera l , the inability to look at the data from different viewpoints , for
example from a different functional categorization , prevented investigations
that might have led to more significant correlations and more confidence in

the results.

Six functional categories were defined for software modules. They are:

(1) Control (4) Algorithm

(2) Input/Output (5) Data Management

(3) Pre/Post Processing (6) System

They are defined in Table 2.1.1-1. This categorization is similar to others
which have been developed and have been used for classification of the mod-
ules in large command and control systems. As far as possible , the modules

for each of the projects were classified according to these categories.

The analysis conducted was aimed at determining if statistical relationshi ps

could be found between certain characteristics of the software and charac-

teristics of the problems reported with that software. The characteristics

of the software, or software parameters, investigated and utilized in the

analysis included module size , function , language , difficulty , and develop-

ment method. The characteristics of the problems reported , or problem i aram-

eters , investigated and utilized in the analysis included the type of error,

time of occurrence , severity and time required to fix the problem. Also an
II analysis of the confidence in the relationships was made . -

1—7

______ .-—-——‘-- --———-——-- - — - —— _ _
~~

.u _ _~


~~~~T 
~~~~ ~~~~~ - — - -  - -r

Most of the analyses were conducted at the modul e level . This reflects the
desire to identify characteristics at a module level which could be determined
early in a project and could then be used to predict the problem character-
istics expected. However the most consistent resul t found was at an aggregate
level. This resul t was that approximately two problems per hundred lines of
source code occurred in each project.

The consistency of this result was very interesting considering the fact that
the projects represented different applications , di fferent cus tomers ,
different contractors , and the problem reports were from relatively different
time periods in the projects’ life cycles, i.e., the software had been sub-
mitted to different amounts of testing. This resul t closely corresponds to
error rates reported elsewhere [NELR78J~

One poss ib le reason for the cons i stency at the aggregate level , i s a phenomenon
found in the analysis of programmer productivity . Programmer productivity

figures are derived at an aggregate level because of the observed wide
di fferences in programmers ’ abilities and because of the wide differences in

.
~

the difficul ty of implementing software modules. These same factors, pro-
graniners’ ability and di fficul ty of the implementation , al so have a signifi-
cant impact on the rel iability of a module. Thus at a module level these
factors may have a greater impact on the error rate than funct iona l categor ies
and are only observe d at an agg regate level.

At the module level , the analysis revealed differences in error rates for the

different functional categories. These error rates are the basel’~es. Thus
the number of lines of source in a module can be used to predict the expected -j
number of problems that a particular module will have. Figure s 1.2-1 and
1.2-2 give the regression lines for Project 1 and Project 3. The modules

have been classified according to their function. Statistically, only a sub-
set of these baselines exhibit a significant degree of confidence. The de-
tails of the analysis are in Section 3. However at this level , general obser-

va tions can be made about baseli nes. For examp le , based on Project 3 the data
management category baseline (error rate) is approximately twice that of all

other categories.

*See References fol low inq page 4-3.

1-8

‘~ ---~ - - -
-
~ ~~~~~~~~~~~~~~~~~~~

;I
~

T. -~
,-. . - ~~~~~~~~~~~~~~~~~~~~~~~

-H.-..- .- .-- — . —

~‘1~ r
40-

Data ~‘ar~-

30~~

...._.,~~l ~od~~~s20 —
— — — — — — —

-

— — — — — Prcces~~~;

I

10 —
~r.~etar~”i~c

• 300 1000
Li n es cf Saur~a

Figure 1.2-1 Number of Problems as a Function of Module Size for Project 3
t 40~~

30
?rocess~~;

=
‘,n — — .~li ~odu~~5‘~~ 4~J

— H—
-
,o — — ., -~

-H-

z — H--

—
H.—

~~~
— H-

10 —

p —

H--
H—.

5CC 1 000
Lines c~ Sou r:a

Figure 1.2-2 Number of Problems as a Function of Module Size for Project 1

-_ _-,- .-- _  -
-
~ — ~~~~~~~ C H~~~~L ~~ ~~~~~~~~~~ __ ~~~~~~

_‘—.
~~ 

— ________ 

~~~~~~


1~
-
~

-
~ ~~~~~~~~~~~

- - — H
~~~

H
~
- - . — — -,---— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -

The error distributions we re less consistent than the problem rates . Five
categories of problems types accounted for over 40% of the problems In each
project. These problem types were computational , logic , input/output, data
handling and user requested changes. In four of the projects the most preva—
lent type of problem was in logic. In the other project the logic problems
were exceeded by user requested changes. In the categories other than the
five mentioned , the distribution varied between the projects. The variations
can be accounted for by differences in the methods or in the interpretat ion

-

-

of the categories used to classify the problems.

The profile of probl em types for a particular type of module is not completely
consistent across the various projects. The distribution of problems for a

module is better indicated by the project than by the functional type of the
module. This again is probably caused by the di fferent ways the problems were
classified.

~ I

I
.4

1-10

p

______ —
~~~ lfLL ________ ~~~

---



______ —~~~ 1~~~—•- 
-- 

-

2.0 THE DATA BASE
This section describes the data available to the study effort. In paragraph
2.1 the parameters considered in the analysis are described including the
character istics of the software , so ftwa re parameters , and the characteristics
of the prob lem reports, problem parameters. In paragraph 2.2, the five
software projects and the associated data about those projects are described
In paragraph 2.3 the limi tations imposed on the study by the data are discussed.

2.1 PARAMETERS OF THE ANALYSIS

A basic premise of this study is that the reliability of a software modul e
can be predicted from intrinsic properties of the module. Thus by i dentifying
certain properties of software, its reliability can be predicted. Some of the
measures that have been suggested as predictors of software reliability are
implementation language , module size , modul e function , module difficul ty and

certain structural measures suc h as number of branc hes , depth of nesting and
number of operators and operands . Software reliability can be indicated by the

number and type of problems , the i r time of occurrence , their difficulty to
repair and their criticality . These parameters will be discussed in more

detail in the following paragraphs.

2. 1 .1 SOFTWARE PARAMETERS
The selection of the proper unit of software for analysis is not immediately

• clear. An enti re software development, which in a major project mi ght exceed
100,000 lines of code, seems to be too coarse a unit. In practice certain
subsections of a development are more error prone than others and the identif4-

• cation of these subsections , or segments , is one of the goals of the research
in reliability theory. The approach taken in this study is to use tho
smalles t mean ingful unit of source text for the language processor u~ed during
the development. This unit of source will be called a software module. It is
useful to use thi s as a bas ic component s ince an indi v idual programmer woul d
normal ly code and test these subsections.

I

• The language in which a modul e is coded presents little difficul ty in interpre-
tation or i dentifi cation . It might be FORTRAN , COBOL , JOVIAL or one of the
other high level languages or an assembly language for a particular processor.

2-1

H— - — - . ,r— — —~~i—-—--- k1~_ 
- ~~~~ ~~~~~~~ 

- — 
~~~~~~~~~~~~~~~~~~~~~~~ 

-
. - -

- - -


~~~~~~~~~~~~~

A minor problem that does occur is that some high level languages such as
JOVIAL al low an intermix of assembly level instruction. The method used in
the following report to specify these intermixed modules is to place them in
a spec ial category.

The function of a software module can be described by using a modification
of the classification given in [WOLR74J*. This classification is shown in
Table 2.1.1-1. The basic reasoning behind this particular classification is
that the function of a module is determined by the module ’s effect on pro-
gram and information flow within the system. This idea is expressed in Fig-
ure 2.1.1-1 where each type of module is characterized.

This classifi cation is different than the one used to classify the modules
in the five software projects [THAT76]*. A mapping was established to allow
translation to this classification. This mapping was as follows :

LTHAT76]* Software Data Baseline Study
Control Control

Input, Output Input/Output
Primar ily Computational Algor ithmic
Setup, Post Processing Pre/Post-Processing

Other class ifications may have proven to be m ore useful or provided a better

statistical base for the baselines , however no means for reclass ifi ca ti on
except for a direct mapping as shown above was possible.

The difficulty of a module is a somewhat subjective matter. A categorization
given by Wolverton [WOLR74]* describes the difficulty of a module as the 4

number of interactions it has with system elements. An easy program is one
with very few interactions with system elements , these include most applica -

tions programs. Medium difficult programs are programs that have some inter- •~

act ion w ith system el ements. Examp les are compi lers , I/O pac kages and
utilities. Hard programs are programs with many interactions with system

elements such as operating systems. Certainly other factors contribute to

‘see References following page 4-3.

2-2 

-___ 

—- -~~~~ 

- 
- . - - 

- 
,- 

•~



_ _ _

_ _ _ _  

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table 2.1.1-1 Functional Typology of Software Modul es

CONTROL
AN EXECUTIVE MODULE WHOSE PRIME FUNCTION IS TO INVOKE OTHER MO DULES

INPUT/OUTPUT
A MODULE WHOSE PRIME FUNCTION IS TO COMMUNICATE DATA BETWEEN THE COMPUTER
AND THE USER

PRE/ POSTPROCESSOR

A MODULE WHOSE PRIME FUNCTION IS TO PREPARE DATA FOR THE INVOCATION OF
A COMPUTATIONAL MODULE OR AFTER THE INVOCATION OF A COMPUTATIONAL MODULE

ALGORITHM
A MODULE WHOSE PRIME FUNCTION IS COMPUTATION

DATA MANAGEMENT
A MODULE WHOSE PRIME FUNCTION IS TO CONTROL THE FLOW OF DATA WITHIN THE

COMPUTER

S V STEM
A MODULE WHOSE FUNCTION IS THE SCHEDULING OF SYSTEM RESOURCES FOR OTHER

MODULES

1

•

~

2-3

~~~~~~ 

-

~~~~- &~~~~
—:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ .i ~~~~~~~~~~~~~~



- 

-

~~~~~~~~

- -

~~~~~~~~~~~~~~~~~

— -

~~-—~~

-,-- - ---- - - - 
- -r

CPU STORAGE
(~~co 

-

CONTROL I
- CORE -

.

I/O -;

USER 
SYS 

- 

-

ARIT HMETIC
______________  

UNIT MASS
— STORAGE -~

LE(END IDENTIFIER -
-

CONTROL CO -
~~

INPUT/OUTPUT I/O

SYSTEM SYS

ALGORITHM AL

-PRE /POST PROCESSOR P/P

DATA MANAGEMENT DM

! ~~ Figure 2.1.1-1 Rationale for Functional Categorization - -

2-4

-
~~~
.... -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
-



the complexity or di fficul ty of the module.

Recently a number of structural measures have been proposed as predictors
of softw are rel iabili ty [MCCJ77~ These measures incl ude the comp lex ity of
log ic fl ow , depth of interact i ve nes ting, number of “GOTO ’s”, etc. These
measures we re not appl ied s ince they we re not ava i lable in the software er ror
data base but certainly shoul d be considered in future efforts.

2.1.2 PROBLEM PARAMETERS
In the analys is perfo rmed, the number of problems a software modul e has i s used
as the measure of software reliability . The more problems the lower the reli-
ability . So the definition of what is a software problem determines what is
meant by software reliability . Each of the projects had a formal method for
recording software problem reports and these form the bas i s for the succee di ng
analys is.

The period of collection varies between the projects. Ideally software pro-
blems woul d be collected durin g the entire devel opment and in operation . This
was not the case but sufficient data was collected to indicate the reliability

of various software modules in almost all cases. Had the periods of collection
been relatively more cons istent, the analyses across projects woul d have been
more sign i ficant.

The errors have been cl ass i f ied accor ding to the typolo gy developed in
[1HA176J. The classifications are given in Table 2.1.2—1. The typology was
used by each of the five contractors to classify their respective software
prob lem reports. Since the typology reflected the type of project from which
the typology was developed each of the other contractors had varying success
with its use. Their major objections were that there were no standards or
criteria for categorization and that the typology was somewhat specific to
the command and control system used for the d€velopment of the typology.

*See References following page 4-3.

2-5

—H——— - - - — - — — -

__________ - -  ‘— --- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~ -—- ~~~~~~~~ . ..~~~~~~~~~ •-~~~~-~~~~----—-———- - -  —- . - - ______



-H- - H- —H- ____ --—H 
~~~~~~~~~~- -• - -—

0
-4
F-

(/) -4 LU
LU L)

—
L.

< (P1 LU
= ~~ _J
L~ 0 (1)

~~ w ~~
~~ r~ .j 0 0

U~ LU LU ~~ ~~ C..)
E I-~ CD CD
W Cl) C~~ ~~ 4 Lii ‘-4 I— Lii
i- LU F- F-
-~~~ ~ I- < LU U. U)o 0 CD ~~

.
~~ F- LU

~. LU LU ~~ LU I— CD 0 ~~~ I— .J ~~ Lii ~~ ~~~ I— 1 4

LU ~ ~ ~~ — LU < F-
C) ~~~ U) ~~~ CD ~~~ U) CD

LU LU CD L) C..) CD- LU LU ~~(~ (/) ~~ ..J LU CD LU ~~
~~ ~~ C~~ ~~ CD ~~~ 0 0 =

4-
0
v, -J ~~ ~~~ ~~ - ~~~ U) F- ~~~

9-
0

>,
0)
0
o
0~

CC ~~ C..) CD LU Li.. (~ i-4 ~~~
-
~~

4

2-6

__________ -

- .
~~~~~~~~~~~~~~~~~~~~  ---~~



—

Typical of the four projects that had to use the typology are the foil-owing
coments :

Many of the categories were self-explanatory , wh i le many others we re
subject to interpretation. The task of interpretation would have been
much easier had a description of the categories been documented. Such
documentation, possibly a brief one sentence description of each sub-
category, would have made the job of the analyst easier.

It would help assure uniform appl ication among different analysts.
Categories which seem obvious to the person who developed them on the
basis of observed errors are often obscure to the person using them.
In fact , it would seem that documentation, although sometimes appar-
ently superfluous, is a necessary part of the task of developing a
tool to be used outside the domain of the developers. [FRIM77]*.

Another difficulty with the typology is that there is no differentiation

between causative and symptomatic problems. A problem can be classified by
either the way a problem exhibited itself or the actual cause of the problem.
An example of this type of problem is a program that does not check for the
end of tape marks. The problem can either be reported as a tape processing
problem (I) or a logic problem (B). Another example is a routine call to

another routine passing it an out-of-range parameter. The called routine
performs an incorrect calculation as a result. Is the error in the callin g

string of the first routine , a lac k of input check ing in the called routine,
or a computat ional error in the called routine? Th i s problem also man i fes ted
itsel f in the categor ies of user reques ted changes and recurr ing prob lems.
Neither of these categories describe the cause of the problem if there is
one.

The seriousness of a software problem is a major concern of software mainte-

nance . The goal is to have a few problems and for these problems to be not
very serious. The seriousness of a software problem can be viewed in two
ways. One is the criticality of the software, how immediate is a repair
required, while the other i s the di ff iculty of the repa ir.
*See References following page 4-3.

LJ~ 
2-7

- —---~~~.---~~~~~~~~ - -~~~~~~~~~~
-
-

-
~~~~~~ •~ g:_ ~~ ~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

— — —-

_ _ _

The criticality of a software problem can be rated on a four level scale. A
critical problem is a probl em whose correction is required for the imediate
function of the softw are . A medium serious problem is a problem whose
correction is necessary for future function of the software. A problem wi th
low cri ticality is a problem whose correction is required for function ing of
the software as designed, but not for immediate use. An improvement is an
enhancement in the function of the software . These problem ratings are shown
in Table 2.1.2—2.

The difficul ty of a correction to a softwa re problem can be determined by the
amount of resources required to correct the problem. The required resources
can be measured by the number of manhours required to correct the problem.
This is probably the best inc’icator of the expended resources but requires
very careful bookkeeping. The quantity used in this report is the lengtn of
time between the formal recording of the problem and the record ing of the
correction to the problem. While this quantity may not truly reflect the

- di fficulty it is obviously related to the amount of effort devoted to the
correction of the problem. However with problems of equal criticality ,
(i.e., problems given equal priority to fix) there shoul d be a direct relation-
ship between the number of days a problem report is open and the difficul ty of
corrections.

2.2 THE PROJECT HISTORIES

The h istories of the projects whi ch compr ise the data bases for thi s study
w ill prove useful later in this report in understanding some of the problems
relating to the development of error baselines. These data bases are part of
the software data repository currently being created by RADC. Such a repos-
itory, together with a more fully developed software system and error taxonomies,
shoul d prove a val uable tool for the study of the software development process
and life cycle concepts currently being inves ti gated by the research
community.

The succeeding paragraphs provide summaries of the histories of the projects
involved in this study. More complete histories may be found in [THAT76]* ,

*See References following page 4-3.

L

2-8

~ ~~~~~~~ —- — - — ~~~~~~~~~~~~~~~~~ ~~~~~~~~
-

~~~~ 
- ~~~~~~~~~~~~~~~~~~ ~~~~~



_____________ 
________ -:~~..~~.~~~~—--- --- — r

~~~~ -~~~~~~

Table 2.1.2-2 Criticality of Software Problems

-
. CRITICAL - CORRECTION NECESSARY FOR IMMEDIATE FUNCTION OF SOFTWARE

• MEDIUM - CORRECTION NECESSARY FOR FUTURE FUNCTION OF SOFTWARE

• LOW - CORRECTION REQUIRED FOR FUNCTIONING OF SOFTWARE k~ DESIGNED ,
BUT NOT FOR IMMEDIATE USE

• IMPROVEMENT - A CHANGE IN THE FUNCTION OF THE SOFTWARE

2-9
•1

- - --

— -
~~~~~~~~~~~~~-~~~~~~~~~~

-
~-

-— —--
~~~~~~~

--- - -— - --~~~--~~~~-- =~~~~~~~~~~~~~~~~~
-H-

-

[FRIM77], [BAKW77] , [RYEP77], [WILH77]~ For contrac tual reasons , ful l
explanations of the operational and functiona l characteristics of some of the
projects are not provided in the literature.

2.2.1 PROJECT 3
This project is a real-time control system for a land-based radar complex .
The system entailed both hardware and software developed by the Project 3
contractor. The development methodology was modular , us ing JOVIAL /J3 as the
primary programing language. However , the executive program , as well as
some other modules and subroutines , were wri tten in assembly language.

The hardware conf iguration cons ists of a dual processor system, both pro-
cessors being identical. In operation one processor acts as the Central Pro-
cessing Unit (CPU), and the other as the Input/Output Contro l Unit (IOCU) .
Both processors share common access to the 81,920 common memory locations.
Each memory loca tion cons i sts of a 24 bit word. No spec ial reconfiguration

— is needed for either processor to do the wor k of the other , i.e., the CPU can
become the IOCU and the IOCU can become the CPU without any di fficul ties.

It is interesting to note that this project made use of seven software develop-
ment tools. These included the following:

(1) Cross Compiler
(2) Compiler Support Software
(3) Cross Assemb ler
(4) Digital Simulato r of the Object Computer
(5) Operating System with Debug Package
(6) Digital System Simulator
(7) Data Collection/Reduction Software

Ac tual development of the software took p lace on a dedi cated UNIVAC 1108 host
system and item (4) above , the Digital Simulator , ac ted as the test s imulator
of the project computer.

--
~~

*See References following page 4-3.

2-10

-
I

_______________ - ~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - . —  -.-- --- - H-—-- - - ~~~~~~~~~~~ 
~~~~~~~ - 

- — -
~~~~~

The softwa re system consisted of the Executive , made up of fi ve prima ry
functional uni ts  - a Task Manager , Memory Manager , I/O Manager , System

Auditing Function and Centralized Error Processor - and 109 appl ica t ion

modules. A total of 136,707 lines of code were involved in the development.

- 

Software problem reports were collected during unit testing integration and
operational testing in the field. Each of these reports was classified by a
programmer who had worked on the project according to the problem typology

developed by TRW. This classifi cation was done after the project was completed
at the request of RADC. There were 2,165 prob lem reports collec ted over a
period of 37 months.

The modules which comprised this system were categorized using the functional
categories defined in Section 2.1 (as far as possible). Twenty-three modules
contained no information about their function and were placed in the unde-
termined category. These modules accounted for over half the total lines of
source code for this project (Table 2.2.1-1).

Each software prob lem was ass igned to a parti cul ar module and we re included in
the subsequent analysis (Table 2.2.1—2).

2.2.2 PROJECT 2
Project 2 consists of an avionics control system comprising five subsystems,

a control and displays subsystem, a hardware test monitor, two unspecified

system functions (A and B) and an executive function which schedules the

other subsystem functions. Two other computers provided system and subsys-

tem simulators during the project to provide a test bed environment. The

software was written In JOVIAL/J3B and assembly. There were approximately

80,000 l ines of assembly and 40,000 lines of JOVIAL code. The system was
composed of 69 modules.

Software problem reports were collected during module verificati on , inter-

module compatibility testing and systems validation . These reports were
• classified according to the TRW error typology after the project was completed

at the request of RADC. There were 2,036 problem reports collected during a
• - period of 28 months (see Table 2.2.2-1).

2-l i

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
- , ._____ H-,

— __i_ — -H----- -•

~~~~~~~~~~~ ~~~~~~~~~~ T -

Table 2.2.1-1 Project 3 Software Modules

NUMBER OF MODULES - 109
LINES OF CODE 136,707

NUMBER LINES NUMBER
FUNCTION OF MODULES OF CODE ~~OF ERRORS

CO 15 16,580 427

10 6 2,969 108

PP 22 6,102 208

AL 21 10,045 406

DM 22 24 ,691 826

UNDETERMINED 23 76,320 189

1-
I 

-

4 .

2-12

.4
-
i

L.~ ~~~~~
-

~~
—-

~~ ~~~
_._- - — ~~~-~~~ -— ~~-‘- - 

— 
____ -~ -~~ - _________



-- - - .  -H- — - ~~~~ .~~~~~~~~~~~~~~ --~~
-—-H• H-~~~ 

— - -

- - - - --

Tabl e 2.2.1-2 Proj ect 3 Software Problems

NUMBER OF PROBLEM REPORTS 2,165

COLLECTION PERIOD

• 12/ 72 - 1/76

PHASES DURING COLLECTION

INTEGRATION , ACCEPTANCE , AND OPERATION
CATEGORY NUMBER CATEGORY NUMBER

A 115 L 764
B 382 M 162

C 21 N 45
4~

3

~

; 

2-13 

:1

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 

-

- - ~~~~~~~~~~~~ - - - ~——--

Insufficient information was available to categorize the modules of this pro-
ject. Analyses that required knowledge of module function could not be per-
formed on this data set (Tabl e 2.2.2 — 1).

Not every problem could be assigned to a particular module. Only the 1,443
problems which could be ascribed to particular modules were subjected to de-
tailed analysis (Table 2.2.2—2).

2.2.3 PROJECT 1
This project was a large comand and control system. The software was written
in JOVIAL /J4. The system was composed of 249 modules , of which 77 were writ-
ten by an associate contractor. There were 115 ,346 lines of source statements
and 80,993 comment lines.

Software problem reports were collected during development test , validation
test , acceptance test , integration test and operational demonstration. The
project was used by the Project 1 contractor to develop the problem typology.
There were a total of 4 ,519 problem reports (Table 2.3-1 , page 2-25) collected
over a nine month period.

Only 145 of the modules could be classified as to function. The 77 modules
written by the associate contractor had no information about their function
and 27 of the Project 1 modules were classified as utility modules (Table
2.2.3- 1). Of the 4,490 software problem reports only 4 ,087 could be ascri bed

to particular software modules. The other problems either related to data -
~ -

base changes or nonexistant modules (Table 2.2.3—2).

2.2.4 PROJECT 5

This project was the command and control software for the anti-ballistic mis-
sile system. The softwa re was written in CENTRAN. The system was composed
of 2,413 modules (Table 2.2.4-1). There we re 130,592 lines of source code.
The functions which these modules performed included radar surveillance ,
tracking , target classif ication, radar management and testing , inter-site corn-
munication and comand and control display functions. The application required
both high reliability and availability, as well as fault-tolerant software.

2- 14-

-- -
~~~~

-
~~

-
~~~~

.-
~~~~~~~~~~~~ ~~~~~ k~. 

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



_ _ _ _  

— 

-
- - ~~-— 

- - T E - -~~~~~:~~

Table 2.2.2-1 Project 2 Software Modules

NUMBER OF MODULES 69
LINES OF CODE 124 ,705

NUMBER LINES NUMBER
OF MODULES OF CODE OF ERRO RS

69 124,705 2,036

2-15

I ~~~~~~ — — — - ————-H —--—-*- -.. - -— -- ~~~~~~~~~ .— ,—— - - - - ,  - - -H - H. ~~~~~ H ~~~~~~~ — —

~~~~~ ~~~~~ ~~~~~~~ —.~~~~~~~~..... _ .. ~~~~~~~~~~~~~-_ _-_


—-H- —~~-- -~~~~ — ~~~~~~
—---

~~~
---- - 

~~~~~~~
-

~~~~
-• __:- -;

~•-.- 
—

Table 2 .2.2-2 Project 2 Software Problems

NUMBER OF PROBLEM REPORTS I ,443 (2,036)*

COLLECTION PERIOD

5/73 - 8/75

PHASES DURING COLLECTION
DEVELOPMENT AND OPERATION - - 

-
-

CATEGORY NUMBER CATEGORY NUMBER
A 105 (109) L 119 (161 )
B 569 (634) M 53 (67)
C 22 (28) N 27 (46)

0 244 (272 ) p 47 (148)
E 5 (8) Q 7 (27)
F 10 (12) R 121 (144)

G 36 (41) S 23 (30)
H 2 (3 ) T 20 (159)
I 3 (5) U 1 (19)
J 10 (12) V 3 (32)

K 14 (17) X 2 (62 )

* Numbers in ( ) are total problems including probl ems that could —

not be attributed to some software module.

-
-1

2-16

- . —
~~~ ~~~~~~~~~ ~~~~~-— -2-

~~~~_- ~~~~ ~
- - - -

~~~ 
——

~~~~~~ 
- ~~: _ ~i~_~ - _ _ _



_ _ _  

_ _  - - - - -- - -~~~~ -~~~~~~ --~~~~~~~~~~~~~~~~~~~ ---— -- .- -~~~~~~— - - -

Table 2.2.3—1 Project 1 Software Modules

NUMBER OF MODULES 249
LINES OF CODE 115,346 (l96 ,339)*

NUMBER LINES NUMBER
FUNCTION OF MODULES OF CODE OF ERRORS

CO 30 7,203 527
10 32 18,716 461
PP 18 10,664 365
AL 65 37,262 1 ,067

UNDETERMINED 104 41 ,531 1 ,667

* With Commen ts

;
I

2-17

. I—H. - — - -  - — ---H 
~~~~~~~ • .-- - - ~~~~~~ ~~~~~~~~~ •~~~~ - - 

~~~~~~~~ — ~~ -- - - _______ — -  .
IJ~~~.

IL .- -~~~ —.- — .—-~~ --— — — k—’- ~ -‘~~~~~~~~-~~~~~ -~~~~ 

-



- H - H -  — 
-~~~~~--- -~~ —~~~~~~

- H--—_ ~~~~---- - 
- - - -

Project 1 Software Problems

Table 2.2.3-2

NUMBER OF PROBLEM REPORTS 4,087 (4,49O)*

COLLECTION PERIOD

6/73 - 2/74

PHASES DURING COLLECTION

DEVELOPMENT AND OPERATION

CATEGORY NUMBER CATEGORY NUMBER

A 335 (342) L 0 (0)
B 914 (960) M 262 ( 501)

C 701 (727) N 37 (55)
D 584 (605) P 76 (78)
E 1 (1) Q 177 (187)
F 83 (83) R 26 (26)
6 244 (248) S 21 (21)
H 30 (30) 1 117 (134)
I 6 (8) U 76 (77)
J 377 (385) V 0 (

~~
)

K 20 (22)
-! ~

*Total problems are given Q, including problems that could not be attributed
to some softwa re module.

- -PH 
H

2-18

e I  - .— 

~~~r ~~~~~~~~~~~~~~~~~ —---H ~~~ ‘ ‘~~~~--~~~ -~- --- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-H - ~~ — HH_H~H _ H_H~~~~~ - - • • •_ • ~~H-•__H H-H-_.
~~~~~

_ 
~~~~~~~~~~~~~~~~~~~ — — — -__HH_ H. __.~~ ~~~~

Software problem reports were collected during unit testing, process and
function testing, and system integration . More than 17 ,000 problem reports

were generated , but only the approximately 6,700 that occurred between
1 March 1974 and 1 Marc h 1975 were in the data base provided by RADC. These
reports were classified into the TRW typology using a semi-automated method.

There was no information available about the function of particular modules.
Only the subsystem to which a module belonged was available in this data set.
Another problem was that these modules did not have unique names so problem
reports could not be ascribed to a particular module. This problem was caused
by the use of slightly modified software modules at different sites. This
problem proscribed the use of this data set in most of the subsequent analysis.

Tables 2.2.4-1 and 2.2.4-2 provide the data that was available.

2.2.5 PROJECT 4

This project was the on-board guidance , navigation , and control sof tware used
for both the command and lunar module of the Apollo space vehicles. The
project was written in assembly except for some interpretive code used for
mathematical programming. The system was composed of 22 subsystem s but the
total number of lines of code can only be estimated as between 83,866 and

610,000 (Table 2.2.5-1). The estimate depends on how much code was reused for
each Apollo mission.

This system was developed for the special , single purpose computer used dur-ing

the Apollo missions for flight guidance and control . The programs were hard-
wired into the guidance computer and necessitated core memory conservation
techniques which might be considered poor practice in other less weight-
conscious environments. The resulting programs were difficult to debug,
modify or correct.

Software problem reports were collected during the entire operational period

of the Apollo missions. During this time 11 ,728 problem reports were collected

(Table 2.2.5-2). These reports were classified by using a preliminar y version

of the software problem typology developed in [THAT76]* . The two typologies

*See References fo llowinq page 4-3.

-

•

~~~~~~~~~ 

- .--

~~~~ - 

-
~~~~~~~H~~ 

_ _ _ _ _  
_ _._

~~
j  _ ø -~~~~~~~~~~~~~~~~~~~~~ -H~~~~~~~~~~~~~~ 

— 
~~~~~~~~— - - -


_ _ -

Table 2.2.4-1 Project 5 Software Modules

NUMBER OF MODULES 2,413

LINES OF CODE 130,592

FUNCTION UNAVAILABLE

I

- t
-I

2-20

~~~~~~~~ L __________ - -— 
~~~~~~~~~~~~~ ~~~~~ ~~ ~~~~~~~~~~~~ --


- - ~~~~ -- —

Table 2.2.4-2 Project 5 Software Problems

NUMBER OF PROBLEM REPORTS 5,693

COLLECTION PERIOD
3/ 74 - 2/75

PHASES DURING COLLECTION

DEVELOPMENT

CATEGORY NUMBER CATEGORY NUMBER
A 170 L 188
B 993 M 310

--

C 454 N 112
D 347 P 820
E 14 Q 796
F 19 R 32
6 123 S 236
H 38 T 26

I 5 U 102
J 29 V 246
K 176 W 457

I

-

~~~~~ - - 

2-21

L -- 
-

H 
-- i~~~ -••~

_ 
~~~~~~~~~~~~~~~~~ - .~~


_ _ -~

-

~~~~~~~~~~~~~~~~~~~~~ 
--

~~

•••• - r

Table 2.2.5-1 Project 4 Software Modules

NUMBER OF MODULES 22*

LINES OF CODE 83,866 - 610 ,000**

FUNCTION

*ONLY SUBSYSTEM DESCRIPTION AVAILABLE

**RANGE OF ESTIMATES FOR TOTAL LINES OF CODE

- I

- I

2-22

L ~~~~~~~~~ 
. - 

~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—~ — - -—H-- -- ~H~_~____________ 

~~~~~~~~~~~~~~ 
H~~ -- —

H-

Table 2.2.5-2 Project 4 Software Problems

NUMBER OF PROBLEM REPORTS 11,728

COLLECTION PERIOD
2/67 — 2/71

PHASES DURING COLLECTION

DEVLOPMENT AND OPERATION
CATEGORY NUMBER CATEGORY NUMBER

A Ml L 780

B 2 ,2~7 M 355

C 287 N 851
D 745 p 280

E 14 Q 727
F 1,122 R 57
G 760 S 66
H 683 T 0

I 0 U 0

J 42 V 2,123
K 79

2-23

- •.—--
-~~~~~~~ -

.
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~ ~_ •  - _4•~•~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - ------H--- 
- 

—

— - - - ---H---- -

- are the same as far as major categories are concerned, which were all that
were used in this report. The distri bution of problems Is given in Table
2.2.5—2.

2.3 LIMITATIONS
There were several shortcomings in the software project data base which
limited the types of analyses that could be performed. Table 2.3-1 provides
a cross project comparison of the data provided.

As already mentioned none of the data bases contained any true structural
information about the software modules. The data bases contained at most 

- -

- 

simple descriptions of the modules .

- Only the Project 3 and Project 1 software modules could be categorized by
function. In addition only about half the modules in these two cases could

- be categorized bacause of insufficient information. -~

In several of the projects the software problem reports either could not be
ascribed to a particular module or were ascribed to a nonexistant module.

- 

These problem reports were eliminated from most of the subsequent analyses.

On the whole the analysis was more driven by what information was available
than what analysis should be done.

t~1

2-24

~ -~~~~
I-. 

- 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_________________— H_H-HHH~~~ -
(~~~~~ . H ~~~~~~ H H

HH -H- - - ______ - — — -
~~~

IN3WdO13A3C ~O 3SVI4d >c -c ~c

AiI1Y3IiI~O

N3d0 SAVO

03S013 31VO ).(

N3dO 3IVO

3UO3~~O~~3 ,.c ,~ ,
~ ‘C

1 

O3J.33~dV 3lflaOk ‘C

C c%.i C’j i.fl —.-

I-

VIVO 1V~fl.L3fl~J.S ‘~~

‘4-

NOIi3Nfl~
A.LIX31dWO3

NOI.LXi~.LSNO~ ~O 300W ,< ‘C ~~

3~Vfl9NV1 ,~

• 3ZIS ‘C >c
-I-

w

I—
C —.

- o~, o~ ~~ , ~~~~
‘.0 0 ‘L~. — ~~

• 0

- 111

-v I—

I
• i —

L)
Li.i

,- ~~ ISi ~~C

2-25

________ _________ 
_____________H——- *•--~H - - - -_ - —— -. - ———————— ~~~~~~ •-—H ~~~~~~~~~~ H- - - 

- - H

- -H~~~~ - ~~~~~~ - - - ~~~ ~~~~~~~~~ iz;~~~
— — - -



- 
~~~~~~~~~~~~~~~~~~~~~~~ ~~

-
~~~

- -.-
~-~~~ 

- - -
~~— - 

-.- - ~~~
-- - 

~~.-. ~~-- —

3.0 ANALYSIS OF THE DATA
The analysis of the data bases provided aims primarily at the prediction of

reliab ility based on empirical data using statistical methods. The approach
is phenomenological , relating parameters of software, for example the
functional typology given in Table 2.1.1-1 , with the observed data.

3.1 ERROR RATES
-

- Predicting the number of problems which may be incurred with a particular

software modul e is an important aspect of reliability theory. This importance

is reflected in the life cycle concept, which can be considered temporarily

to be divided into two phases, the development phase and the operations and
maintenance (O&M) phase.

The software management has two main tasks, control and pl anning. Within the

development phase of a project the prior knowledge of likely error rates allows

the manager to sche dule test resources in the most eff ic ient manner , and to
provide the most thorough testing to the software modules most likely to
devel op problems. Thus planning and control in development are facilitated.

Similarly, during the O&M phase of the life cycle, the alloca tion of resources
to problem areas can be s impl ifi ed by the li kely error rates to be incurred
during this period.

The measurement of error rates for this study was by three parameters relating

to modules:
• by size of module

• by function

• over time in the life cycle

Overall problem rates are found in Table 3.1.1-1. The resul ts agree well wi th

an error rate of 2 per hundred lines of code given in [NELR78]* , based on a
much larger sample.

*See References follow i ng page 4-3.

~~

- 
3-1

— ——H —_- - - ~~ ~~~~~~~~~~~~~~~~~ -~ •,-~ - - - - — H- --- - ~__ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • - ‘- H . ~
H
~~IId

t1~ ’ -
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~ ~~~~~~ - • ~~~~~~~~~

-.——
~~~~~~~~~~~

- ..
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

- -

- ~~~ -- H —- —
- —

3.1.1 EFFECT OF MODULE SIZE
The size of software modules is commonly thought to be related to a number of
software problems . The general feeling is that if a module is twice as long
as a similar module it should have on the average at lease twice the number
of problems . This hypothesis is not totally supported by the analysis. In
the proj ects shown in Table 3.1. 1-1 , the correlations in general are low , and

do not give us much confidence in stating a casual connection between module
size and number of problems , assuming an average module size.

This fact seems to contradict the statement that two problems per hundred
lines of code appears to be an empirically valid measure of error rates. And
indeed the statement is counterintuitive. If one increases the module size
by 100 lines of code, we would expect two more errors to appear. But this
ignores the fact that the two error figure is derived on a gross system—level ,
and that errors can appear between modu les , not simply within them.

For this reason an additional analysis was made on the effect of module func-
tion by size and problem.

3.1.2 EFFECT OF MODULE TYPE
Modules with different functions might be expected to have different problem
rates. The results given in Table 3.1.2-1 show that the error rates for
Project 3 do not vary significantly except for the category “undetermined” . -

-

Tables 3.1.2-1 and 3.1.2-2 show partial categorizations of modules in Project
1 and Project 3. Note that the aggregate totals indicate error rates in the
large as being approximately 1.6 per hundred lines in Project 3 and 3.5 per
hundred in Project 1 (Table 3.1.1-1). The module categorization for Project
1 is more complete than that of Proj ect 3. It would seem therefore that the
combination of incomplete categorization along with arbitrariness in assign-
ing errors when these occur between modules cause wide variances in the by

-
~~ , module type erro r rates. The aggregated results , based on the project level ,

-

smooth over these inadequacies in data and categorization .

3—2

-
~ ~~~— ~ —•~~~~=- -~~~~~~~~~~~~~~~ i

--H
~~~~ ~~~~~~~~~~~~~~~~~~~ -H~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T - - 

4~~ .4



_ _  
- 

- 

~~~~~~~~~
-

~~~~~~~~~~~~~~~~~~ -
- -

- 

r

(/-,
-k
-~~

-
~ ‘.0

o ‘C)
0 1.0 1.0
H . . . I
— — c..J u-

- I-

—

-Ic
-k

0
C
C

r-.. i.n ‘.0 O~ c~
C) ~~~ C C ~~~~~~~ OH-i C
4.) L&J ~~ 

rH-- 1’) f 3)

It 3. 3. I-

— 1.0 ‘.0 0

~~J (3) (\J .- O~ ~~
)

‘— —. I~~~ .~~ —
a) 0 w

3 ‘- 0
0 0o 3. ç)

I.
U-

— ______________

— z
3-

.0 V)
w a~ a-. a-. ~I- _i C ‘.0 ~~ — C’4

3- 0
C 3. U-

I
H —
• —I— ~~z v~t U_i

~~~~ U-
C C

I—
(_,

L) ~~ c.~

_ _ _ _ _
-~~~~~~~~ :

-- ~~~~~~~~~~~~~~~~~~~ -HHH-H •~_ ~~~ _ H - ~~~~~ W~~~— r
rI~~~~~~

,

H
---H

~~~~~
H- -~~

-

Table 3.1.2-1
Project 3 Correlation of Number of Problems with Module Type

H 
Module Function Slope Intercept Correlat ion

Control 0.0202 6.08 0.732

I/O 0.00989 13.1 0.537

Pre/Pos-t Processing 0.00944 6.83 0.195

Al gorithm 0.0114 13.82 0.233

Data Management 0.0058 28.24 0.135

Undetermined 0.00055 6.40 0.228

_ _ _ _ _  _ _ _  H 
_ _ _ _

HI

I -

3-4

- -- - - - - -  - - ~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

L i.~—--— — ~~~~~ _
“ ‘

~~~~~~~~— ----~~~~
---—-- ~~~ ~~~~~~~~~~~~~~~~ ‘-i-~~~~~~ =

~~~~~— - -——- --- —
~~~~~ 

-

r~
-—

~~~~~~~~~~~~~~~~~~~~~~~ 

--  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
-•~~~-~~~~~~

-- - ~~~~~~~~~~~~~ -H- H•HH- - H-__ _-H• - ~~~~~~HH ~ -H_~_ -

Table 3 . 1.2—2
Project 1 Correlation of Number of Problems with Module Type

Module Function Slope Intercept Correlation

Control 0.00726 14.67 0.170

I/O 0.014 1.31 0.757

Pre/Post Processing 0.0225 -0.469 0.723

Al gorithm 0.0178 -0.4929 0.777

Data Management - - -
Undetermined 0.0223 -0.0604 0.707

4 ’

~

4 
-
~

• fr

~~~~~~ 
H

3-5

_ _ _ _ _ _ _

H

~-TTTT .~~~~ , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ::TH -—
-

_ _
-

1.1I~~~~~~~~~~~

• H• HH _ -

3.1.3 EFFECT OF TIME
The number of problems recorded for each month of the collection periods Is
given In Figures 3.1.3—1 through 3.1.3—5. As can be seen the number of errors
ul timately declines with time but Is not a monotonic function. There Is an
Initial Increase In the number of problem reports followed by considerable

fluctuation during the general decrease In error reports .

These fluctuations may be attributed to two main factors , one which concerns

the type of data collected, the other statistical. In general, testing does
not begin simul taneously for all software modules. This would account for the
Initial period during which there Is an increase In the number of errors,
after which there Is a declIne In errors. The graphic regularities we see in

Figures 3.1.3-1 through 3.1.3-5 tend to support the hypothesis that error data
shoul d be classified in time within specific life cycle phase.

The second point that should be made is that the apparent variances in the
graphs are to be expected in any discrete measurement process. It is not
possible to continuously find errors.

A further breakdown of the previous graphs is given In Tables 3.1.3-1 , -2,

-3, -4, -5. Here the type of problem that occurred each month is given. As
can be seen there does not seem to be any major differences between the time
of occurrence of various types of problems.

3.2 DISTRIBUTION OF P~~BLEMS
Although the problem report rates for each of the projects is remarkably
similar , there are considerable differences between the projects H

In the way the problems are distributed in the problem typology (Figure 3.2-1).
The most obvious difference Is the high peak of type L (user requested

• changes) problems for Project 3. This reflects the nature of this devel-
opment as a demonstration project rather than an operational system.

4. Another major difference is the number of type V (hardware problems) in Pro-
ject 5 and Project 4. These reflect the special hardware for these projects. ‘

3-6

I-

;~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 

HH~~~~~~~~LI — 
~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —‘ -H- - ~~~~~~~~


L —
~~~

- 
_

‘C,

I 

I 

_ 

H

H_

H _____J
_ _T
H_ _

I I I I I I I ~

H SW3180~d ~0 ~I38WflN -
~

- 

- 

3-7 
H

I-  ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I~~_$. -••,_~~ ~~~~~~~~~~~ -H~~~~~-H-~~ _ -~~ —

— 
-~~~~ --~ —~~~~—~~.— ~~~~~~~~~ 

—
~~ _______ 

——-—---



H ~~~~~~~~~~~~~~~~~~~~~~~~ 

-_________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

H

— U)
C,.,

.~

— ps

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(\1

.s
- 4.)

• C%1

-

H i
SW318O~d dO ~i3~W(I~4

3-8

- -H H -. - - ~~~~ -~~~~

~~~~~~~~~~

‘
_ _  

- H 
_ _  

- - -
____________________ — ~~~~~~~~~ — 

~~~~~~~~~~~~~~~~~~~~~~~ •.


__
— - --H--H

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
~~~

Ci
I—

p..

-c.1.)

SW319O~Id JO ~3~WflN

3-9

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•-. • - ~~~~~~~~~~~~~~~~~~~ 4.~ .. -~ ~~~~~~~~~~ - - WJ-3..3. —

~~~~~~~~
--— - - - -

-

- - H ~~~~ ~~~~~~~~~~~
-

-~~~~~~~ ~~~~~~~~~~~-——
.
- -H.-~---H--

— -
~~~
- - - 

~~~~~~
- -

~~~~~~~~~~~~~~ z~~~~~~~
H. HH .  -~~—- - -

I.-
1-
Ic—.

-
~~~~~~~~~~~~~~

‘-I - >~~~~~

I -

~~~~~~~~~~ :
I -~~~~~~~~~~~~~~~~~~~~~~~

I-

SW319O~Id JO ~I39WflN

--p.
’- H

• 3-10

I - - _________ -H— - — - - — - H~ H-H-H H_ 
~~*~~ 3.HHy~_~~~~~ _ - ~~~~~~~~~—_

_________________ — —__~~ ~~ — . ~~~~~~ , 
~~~~~~~~~~~~~~ 

~~~~~~~~~~ ~~~~~~~ -



________ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 

— -
4~~

_-HH-_H- HH~~-HH-H~ H- —

p..

-

~~~~~ ~~~~~~~~~~~~~
__  -

I 
- 0-H ..—

_____I— - U-
_ _ _ _ _  H I-

I - 10
4.)

_____ - 0

I 

-

-J

I I I I I I I I 1 I

SW31gO~gd JO ~I38W1)N

I- 3-11

~~~~~~• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 

-

~~~~~ 
~~~~-


-- _______

-H—-- -

z —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — - —  —

N — C C C C~ C — — C — N — — C C C C C C C C N C C C C C C C C — —

w -,
0.
>1 —

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~‘

— N — N — — N N N — —— — C

I 4
— — — N N — — N — —

H
— -

~

4
--p.

‘.0
N. I N. I N. N. N. —a-. a-. It— 3- — — 4_a

C

3-12

—

- H —_ _ - --H - .-#-
~~~~~~~~w - -

~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~
.

~~~~ 
—

~~~~~~~~
-.—.--

-
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ i: 
—-  

___________ - 
- - -

~~~~~~~


___________________ - ~~~~~~~~~~~ ~~~~~~~ —--— —

- - - -
-
l

I

~~~ _
C — — — ——

— — a — a a — a

- - -

3~~~
-‘a

0 —
C-,

C C C*{ ’ I C CO C  NNC Neil — C  CCC — C  C C C  CC CCC CC
C,)

4.,
U
41 —

-

~~~ • O C C — e C C **t - .NN —~~ NL~~~~~~~~~~~N — C C — C S C C C ~
-

p.
0. ~~
3-

C,) -

3- CCSCC— CCC— SCelC— CCCNN— COCCCOCCCO41CCCC~~C C
a S

C,)

U
I- -
.0

• - . . .
~ • a

- -
F

(
~1

3—13

_ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _

~~~::ii
—ii ~ :TJ L~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— - 

-__



- .. ——--—---- ~_ - H _~_H_~~~H 
~~~t H ~~~~~ - - -— - -

CC S N P1 C N C C N C N C N N N p. 1. * N 0 ‘.4 ~~‘. C-I

C G — C C C P 1 C l N o~NNC~~~N~~~~ p.Ne1p.:’ .’ . *C 4
.1

N
—

C C C CQ C C C C— C C S C C C N C- 1* — C C I — -. C N C 1 P~

41 a
0.

a t

-

U,

c

Cs4

4.,
U C C C C C C O C C - C O— C C C C N N C C C N N C S N — C Cl
U —
.
~~,

Cd

C’J
C,

I-

c-,

U
C l* N — — N N —

C S C C S C C C C C C C C — O 0 1 ’ eiI ~~~~— C- I C C~~~ L~~C - l C - I 4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1’— — — — P 1’ . p . p . N— N C) ’ . u~~C C —

S C N N — — — C N N N C C-i p.’. 0 —  Cl N C * Cl C

4 
N —  —

-

___________ — — •-~~~ --—--- ~~~~~~~~~~~~~~~~~ H~~~~~~~~~~~jj~~~~~~~~~ 
- 

—~~~~~..



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ H---- - -- 

_____ 
- 

I

‘-a
~~ N N—  C I — N N N  ~~~N~~~~~~~ C N— N —— — C l — —  C
o Cl

C 0 0 00 0 0 — C C — —

—~~ C C l C 3 Q C C C C C QC C — — C 2 C l N — — — ~~~QIei~~~NC C  ~l
.
~~~
a,

C

4.)
C C C 0 C C C C C C C — C ’~~~~- - —C N C l CC N 0 C l N C C C ~ -

0 —
C-H,

H—

c.’I
4.)
U C C *— — C C 1 — — Q ~~~~~~ — C C ’ . e i ’ C ’ ’ L t~~~p.~~~~~~ N I c - N C ~~~
U —Cl ——I.- —
0
s-H
C.

C
N

C”

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~N —
It —

I-

C— C C  0 0 4 1— 4 1  — C l N N  NI~~CN N  NN CC I—

a

C C N 9 N C C I O—  Cl t-. 0 Qt . L) c~~~~’~~~~~~~~~~~ — C l 0 C
a — —  NCI -- -

C C C C C C C C — C — N C C — ci ~ ‘.~~ C 4 — — — — C ~~~ 
- 

- -

--- -
~:i-~

--- i 1:; j I •
~~

-

I~)N. N. N.

H4
3—15 

-•

_ _ _ _ _  -

- T TTIT TTTI T~ . .J



-H - — —

— 
~~ C Cl 

~~ C C — —
41— —

C

-~

~
) N ’ ? C C C C C C  Cl

— Cl

— —

—
— C 4 C F -— C C C  ~~ -

C —

41 — N —

C C C C C CQ C C  Ca-
~~C l C l C — c C c C

a  a

I~~C e i C 9~~~C O O  ~C. ——— Cl P.
C? 

Cl~~~C — ? C C C C  ~~

> = 
— .. a 

a

C
—

3- Cl —

— 

‘ . — 9 C i~~NC C C

0 C F -~~~~~~~~ t ) — — C -  N
N C —

C. ~ . -

: ;; ;:;;;; ; = 
~ 

. 54 •

C — * I~~NN —  
a

t’ .— C 0 C l ~~~C 1 C C
C —C — C l  9 —

C
— — — — Cl P.

P.
P~~4— C i -~- N —

— C l —  N

—— — 
~~~~~ —~~~~? N C C C

C~~ ’N ~~
— C C C C C

• ~~~~~~~~~~~~~~C - - s - -

N. N.)— - -
— N

— 3- H

- - C”
N. N.
a-i (

~ ~~

3-16

- _ _ _ —

-
•

-

•,.~~
i_ _.__ J__ __ ,,,._ 1._ ,__ ~.. -

———- - —- H— H---
k;Hd~~~~ ~~ H H H - — - — - —

~~~~~~~~~~~~~~~~~~~~~~~~~~ NC1 ! .~~
N < p. ...GP.~~~PC N N c1 Cicl -

~~C

— 
41

- 
-

~ 

—

— 

4 N C N~~~~C P . — C l N 0  ‘4 
— 

C C C C C C S C SC C C  C
P.
—

4) 
Cl

0.
>~

C C C- C — — - C -C — — 4 1 —  it 
— 

4 4 1 N~~~41 C3 CI P. F’ CI Cl C.
H N9~~~~~~ ’f ’9ClN~~~ C i N —  ~~

.0
0 —

5-
0.

— 

CC.~~I’.1’C C 1 N — — C l 0 ~ ~~C N P C C l — N k’ N 9 N  H

> — Cl —_
- a- Cii

4.)
C
ox N — - 4 C — 4 1 —~~ l 4 1~~~ -4C N ~~~~N~~~~~NCC1~~~C l C  Cl

LC) N N — 41

4_a 
— —

U
a, —..—) 

— — I S

NCi C l N C 4 1 -~’CI C I — C C  . N — C - C i ? 9 4 1— C l— ‘4
C. —

- H 5 . .  - -

C” - - 1

C i — C C C I -C C I — N — — —  , C C N N C I C C N N C- - ‘4
3- — —. C IN— CI CI C I C l —— C l — N

Cl

a,
3-
.0
It ~~NC C~~~C1~~~— — N C P .  C. ~

) C N N C i ’~~C N 4 14 1 ? —  Cl
— ~~4~~ N C I N — N C l — —  .p N

N —

~~P.Ci1~~~N —4 N P . C - ’ P~~ .~ ~~~N9 C C N~~~~~~ N t — — c  -4
p.~~~p.~~~P el :JCleiI CJ — i~ 

C C C C - N—
Cl N C-

— 
— 4 l ~~~ P 4 1 C  ~~~~p C 9 N N -. . -.39C. N N 4  C

4 C N N C CP . 4 NCJ N CI
-~~ — — z 

-

• 

— 

N~~~~~~ C’ aeiJ —~~
4 

—

- 

_ 
- - 

- I

~~~~~~~~~~~~~ _ _ _ _ _ _ _  11 T:~~~~ ~J


_ _ _

-H-H---— -
~~~~

________ 
~~~~~~~~~~~~~~~~~~ H-~~ -H~~H~~~ - 

_ _ _ _ _

E
— — — CI N — — C i — —

3—— C l — — N — C l — — N P

-I
41
C.
>1 -

— S S C S C S S 4 1 C C C 4 1 4 1 C C 4 1 C 4 1 4 1 4 1 4 1 C 4 1 4 1 3 4 1 C C S C 4 1 C C C C S C 3 C C 4 1 C C S C S O C C S C

.0
0

• S C N — 4 1 P . C I~~~ C i P C . C C C N lN~~. — 4 1 P — N — f —. 3 4 1 N — C .’ . C — — C l P 4 P — — 4 1 C 4 1 C i — N C 3
N P’ . C . P~~~ C i — — C l — N C i N C l — C 1 - 1

‘0

-C

CO ~~ C— — ‘4C,.

4.’
U

-~~~~ •C~~~~ 41Ci~~~~ N N N C 3 P N N C ’ 4 C C . 4 I , —~~~~ N C l — c ’) 4 1 C 1 C C — ’ PC 3 N ’ 0 C l P N 4 1 4 1 4 1 C l P — S — — — P — C l41 CS
o . Ci lC— 41~~~~.* C - O* C ~ C l— ~~~N — N — — C l C) — — — — Cl Ci Cl Ci1 Cl

—
0. —

C” -- • C C 4 1— C N C C C C C C C C C C : 4 1 4 1 4 1 C 4 1 4 1 4 1 4 1 4 1 C 4 1 4 1* 4 1 C 4 1 4 1 4 1 C 0 4 1 4 1 4 1 4 1 C 4 1 4 1 C C C C ‘P

•—

C”

—
*CN N~~ ‘0 C ’ P C — C I’P — .p -.C Ci~~~ p. i’P Cl~~~ *C .41C- lCil V~~’ .’ .Cil Cil C3’041C.Cl41 Ci P~~~ 3C l 41 C

10 4 C C l C C l N Cl CiJ * N?eI - , N — — ~~ —— — — C-.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ P—
C l — N—Cl  Cl C

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4
.1 ‘PS — — ‘PCN ’ CN~~~4 .$ ~~ ‘PCiCI ’PCZ — N C I — — —Cl C l — Cl — — — —

C Cl
_ _

Cl
Cl

C

iT
-

~~i IH
3— 18

—- — ~~~~~~~~~~~~~~~~~~ -

— H.~~I.-H~~~~ H_ -H— — — — ~~~~~~~~~~~~~
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ H 4 ~~~~~~~~~~~~~~~ — —

_ _ _ _ _ _ _ _ _ _ _____ -~~ - ---—----—- -H -
--

—

~1

Table 3.1.3-5 Project 4 (ContInued)

I N I P I Q I ft I S I T i u i v i TOTAL
$ 0) 0) 0) 0 1 0 1 0) 0) 0 1 0 1
r ø i 0) 0) 0) 0) 0) 0) 0) 1)
I 118) 7 9 1 2 8 1 2 9) 0) 0) 0) 113 1 779)
I 8 6 1 2 4) 4 7) 8) 1 1 0 1 0) 8 6 1 673)
I 35 I 12 I 54 I 4 I 0 I 0 I 0 I 166 I 772 I

~~~~~~ 
I 25 I 24 I 52 I 1 I 3 I 0 I 0 I 1) 1  I 671 I

~~~~~~ I 3 0 )  L I I  2 8 )  0 )  0 )  0 )  0 1  8 9 1  529 )
I 19 I 23 I 41 I 6 I 2 I 0 I 0 I 1)8 I 733 I
I 29 I 15 I 32 I 4 I 6 I 0 I 0 I 48 I 424 I
I 2 0) 7 1 4 2) 2) 0) 0) 0) 7 0 1 352 1
I 4 2 1 7 1 4 3) I I 1 1) 0) 0) 90) 556)

~J 33 I 4 I 24 I 0 I 3 I 0 I 0 I 11 5 I 5)8 I
I 3 9 1 2 1 3 6) 0 1 1 7) C I C I 114) 556 1
I 2 7 1 8 1 2 4 1 C I 0) C I 9) 7 9) 427 1
I 30 I 6 I 19 I 0 I I I 0 I 0 I 50 I 400 I
I 5 3) 7 1 3 6) C I l i i 0 1 C I 8 7) 574 1

1968 I 19 I 4 I 24 I 1 I 4 I 0 I 0 I 9! I 448 I
I 25 I 7 I 15 I C I 1 I U I 0 I 36 I 281 I
I 1 0) 1 1 2 8) 0 1 1) 0) 0 1 2 7) 236)
I 8) C I 9 1 0) 0 1 0) C I 1 3) 114 1

3 1 0 1 2) I I 0) 0) C I I S) 115 1
I ~2 I 3) 9) C I 3 1 C I C I 3 9 1 238 1
I 11 I 3 I 13 I 0 I 1 I 0 I 0 I 16 I 143 I
1 6) 2 1 I l C I C I 0 1 C I 1 1 1 6 7 1
I 21 I 6 I lb I 0 I 0 I 0 I 0 I 20 I 160 I
I 1 4) 2 $ I I C I C I 0) C I 2 0) 105 1
I 6) 2) 1 2) 1 1 0) C I 2 2 1 134)
I C I 0) C I C I 0 1 0) 0) I I 6 1

C I 7 1 I I C I C I C I C I 3) 3 1 1
1969 I 9 I 2 I 4 I 0 I 0 I 0 I 0 I 16 I 123 I

I 1 0 ! 5 1 I I C I 0 1 0 1 0 1 3 1 1 114 1
I 12 I 2 I 10 I 0 I 0 I 0 I 0 I 156 I 240 I
I 2) 0 $ 6 1 C I 0) C I 0) 4 1) 9 3)

8 1 C I 9 1 0 $ C I C I C I i i 3 ?)
I 6 1 0 1 6) 0 1 C I 0) C I 5 1 6 1)
I 12) I I 5 1 0 1 0) C I C I 7 1 8 8)

-I 7 1 C I 7 1 C I C l C I U I l i i 8 9)
$ 7) I I C I 0 1 0 1 C I 0 1 8) 6 0 1
I 2 1 0) 8 1 0 1 C I C I C I 1 9 1 120 1
$ 2) I I 6 1 0 $ 0 1 0 1 0 1 L I I 6 1) - -
I 1 1 C I C I I I C I C I C I 4 1 2 4)

1970 i C I 0 I C I C I C I 0 I 0 I 1 I 6 I
I 17 1 1 1 C I C I 0 1 0 1 C l 6 6 1 239)
I I I C I I I 0 1 0 1 C I 0 1 4) 2 9 1
I I I C I C I C l C I 0 1 C I I l l 3 0)

9) 0 1 3 1 0 1 C I C I C I 6 1 6 0)
I 13 I I I 9 I 0 I 0 I 0 I 0 I 67 I 160 I
I 1) 0) 1 1 C I 0) C I C I 9 1 3 9 1
$ 0) 0 1 3) 0 1 0 1 C I 0) 0) I I I1971 I C I 0 I 0 I 0 I 0 I 0 I 0 I I I

I 851 I 280 I 727 I 57 I 66: I C I C I 2123 I 11728 I

3-19

_ _

_ _ _ _ _

_______ - - - - _-
~ - - - H~•-H~ --H

-
•HH~~~~~~~ H-a~~~ ~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—--- --
~—

-
- - -

-
- -

- ~~~~~~~ -:. - --

________________________ --a-H -
— - H~ - - - — r

C” C\J

4_a
-‘aU U U U

41 4) 4) 41 4)
.,_,

~~~~ .,-) .
~,

0. 0. 0. 0.

:~~~~~~~~~~~~~~ ~~~~~~~~~ 

5. rH. r., _

_

_  

I

_ _ _ _ _  

-

~~~~~ 

-

~~~~~~~ 
I..’

-• - 14
- __________ __________ __________ .0 ~~.

~~ 
5-.

I 5_ ~~- - 4.)
.. I • _H — _____________ H U, ~~

.~~
- 

- -

I ~~~~~~~~~~
-

I 
•
~ - - J ~-

_ _ _ _ _  
4 -t_____

I j I ~~_.

-

~~~~~~~~~~

‘a
-

~~~~~~~~~~

-

~~~~~~~~~~~~~~~~~~~

- 1

3-20

- ~~~

_ _ _ _ _ _ _

— -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

--H - -H --—-a- -

The other projects generally did not record hardware problems using the same
recording methods used for software problems .

This distribution of problems by the type of software modul e (Figure 3.2-2 ,
3.2-3) shows great consistency wi thin a project. The difference in problem
distribution between control modules and I/O modules within the same
project is considerably less than between the two sets of control modules
in different projects. The great similari ty of problem distributions

for different types of modules can be accounted for by either (a) modules of
different functional type are more greatly affected by the type of project
than by their function or (b) the methods used to record and classify problem
reports vary more between the projects than the variance caused by modul e

- function.

3.3 TIME-TO-FIX
A major software parameter that has not been given sufficient attention is the
time necessary to fix a software problem. As mentioned in section 2.3 the
only data available on the time requi red to correct a softw are problem is the
number of days that a software probl em report was open. This is the measure

- that was used in the~fo11owip~. analXsjs. • • - .  . I

The limi tations of this measure , however , are obv ious . In addition to delays
in making up the physical report, there can be delays in allocation of
resource . Al though the best measure of the difficul ty of correction is man-
hours spent with problems of equal criticality , a statistical relationship may
be assumed between the number of days a problem report remains open and the
number of personhout’s needed to correct it. -~~~~

-1

3.3.1 EFFECT OF MODULE TYPE

In genera l the type of module has relatively little effect on the length of
time a problem is open. Table 3.3.1-1 shows that the time a problem is open
is relatively consistent except for the category “other” for Project 1.

3-21
I

_ _ _ _ _ _ _  
_ _ _ _ _  _ _ _ _  _ _ _ _ _ _ _ _ _  -—-H-j~~

‘
I- .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~ H — 

- - - - _

~~~~~~~~~~~~~~~~~~
-

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_
H -



___  --

~~~~~~~~~~
- - - -

~~~~~~~

-—

~~~~

- —-----

~

—

?1~~~~~~~~-! !~~~~~~~~~~~~~~~~~~ i!:!!
~~~~~ ~~~~~ ~~~!! 0! !

- -

- - - I - - - - I - • a 

—

: -
~

- 

_ _ _  _ _ _  _ _ _  _ _ _  _ _ _  

41

_ _ _  _ _ _  _ _ _ _ _ _ _  _ _ _  _ _ _  

I

~1 WA WA
_ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _  I _ _ _ _ _ _  

~~~~~ 

I

_ _ _ _ __ J__ _ _

I -

- —, H I I I : —
~ i

=
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I_ _ _ _ _

-

~~~
~~~~~~

- ~~~~~~~~~~~~~~~ 1 t ~~~~ t ~~~~~~~~~~~
5-

- _ _ _ _ - - _ _ _ _— -~~~~~~~~~~ -
~~~~~~~~~~~~~~~~~~~~ 

- -  - 
.~~~

I..

- - 
- 

- - : I I  - 
- I ;

- 

- 

- 

~~~~~~_ 

-

a’4 _ ~~~iI~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

3—22

-

-

~

-

—

,
. ~~~~~~~~~~~~~~~~~ - - - — H H H~~- H ~~ - -,‘-H~_’- - -~~~ r~~

I
~ ~~~~~ H H H H _ -

_______ - ~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~

.
~‘ ~~~~~~~~~~~~~~~~~~~ -—‘i----- - - .

_ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  

h

~~~~~~~~~~~H 
~~ r-~ — ~ ,-.~ c-.j ,.- I.. - e-~ .— e a — — ~ - ,~ ~ —I I I I I I I I I I I I I I —

l i l t I I . I i : —I l l I t i l l I I I I
=

— I I I I I I t i _ i i i I I I I I I)

—
I l i i I l l ; I I I 4 1 I i l l t I l l

H
I I I I I I 1 1 1 1 t I l l 1 1 1 1 1 1 1 1

l I l ~~ I i i 1 1 1 1 I I l ,l___•— ___ —f i I I I 4)

I i t I ~~ ~~~ I I ~~ I I I I I I I I I ~~~~~ I I I
C. C. 4)

WI 3-
I I 1 1 1 1 1 t i I I I I t ’ ll I I I

z z
4 1 1 i i I i ~ l i l t l I l t t i l l

z -
_ _ _ I _ _ _ _i i I t I l l I - I I I t I l l l i i (SJ

—J 4_a (Y)

t i l l I l l i i I I I l i l t I i) 4)
~~~~ •r, o

I I  ~~ I I  ~~~ I t _ I ~~~~_ I I I  i~ 1 I t ~ _. t I I~~~~ — ~

I I  t t ~~ I t  ~~~ I t ~~~~ I i i  I~~ I I i I ~~~~~-t I I ~~~~~~~~~~”— —
I t  I I I  t i l l  1 1 1 1  l i i i  1 1 1 1  .~~~

=
‘ I I I  1 1 1 1  l I l t  I l l  I I  l i ~ 1 1 1 1

_ _ _  _ _ _  _ _ _  _ _ _  _ _ _  _ _ _  
-b

l i i  l i l t  t i l l  i l l  I I I I )  l i i i  I-’)
~1~~I-i. ‘~.

t i l l . I I  i~~~ 1 1 1 1  I I I )  I I I )  i l —I—

i t  —i— i i l l  ~~~I I  i l l  I I I

E ~~~~~~ 
HJE

) I i  I t~~~ ‘ I  I I L_i I I I  I I I  l~~ 1 1 1 1 1
m — ~~ C-J  — ~~- ~~ e~ - ~~ ~“ ~~ -~~

3~ViN33~3d

k
I

3-23

- -
~~~~~~~~~

-
~~~~~~~~~~~~~~~ 

— —
~~~~~~~ _ _ _



~~~ J 

~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~~~~~~~~

-.--

~~~~~~~ 

-- —
-- - _

~~~~~
_
~~~~~~~~~~~

_ -- - —

Table 3.3.1-1 Time-to-FIx by Module Type

Days Open

Module Type Project 3 Project 1

Control 7.1 5.0

I/O 9.8 9.0

Pre/Post Processing 8.0 7.0

Al go ri thm 7.8 7.. 2

Data Management 7.6 1
Other 9.6 11.7

I

3
I

•~~~

-H H

~

3—24

-~~~~:--:
~~~~~~~~~~~~~~~~T H  

~~~~~~ 
- -- . _ _ _

______ —~~~

the average problem remains open from 7 t~ 9 days.

3.3.2 EFFECT OF ERROR TYPE
A comparison of the time required to- resolve software problems as a function
of problem type is given in Figure 3.3.2-1. It can be seen that the time
required to resolve problems varies considerably wi th different types of pro-
blems but no clear trend between projects is evident.

This may be due to the problems we have previously discussed concerning the
adequacy of the error typology and the difficul ty associated wi th the

categorization of errors. The lack of trend, the var iance , may be due to
the non-uniform assignment of errors both across and within projects .

3.4 CROSS PROJECT VALIDITY
As can be seen from the project comparisons in this section, there is consid-

erable variation between projects. The factors causing this variability be-

tween these projects cannot be determined from the data available in the soft-
ware problem data base. The values for problem rates and error distributions
deri ved from these projects can best be used as exampl es of the range of
variability rather than normative values.

The gross rates for the projects are the most consistent values that can be
derived from this study. The distribution of the majority of software pro-
blems into just a few problem categories Is also consistent through all
projects .

Tables 3.4-1 through 3.4-3 compile error rate data associated with a project
undertaken at GE/Sunnyvale. This was a large coninand and control system
consisting of these subsystems - a connand assently subsystem, a data base
management subsystem, and a report generation subsystem. This system has
an operationa l history which we P~ive analyzed. Again there seems to be a
consistency associated wi th gross error rates. This leads us to suspect that

-9 such aggregate project-level data are the only meaningful figures which can be

III

3-25

~
-..

~~
-.—— -t

~~~~
--

~
_- — 

- ‘ - —
~~~~~-


-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _

—

I-
~
-

5-) 5-)
L~J 1.1.1
-

~
-

~o 0

0. 0. 0.

=~~~~~ =~~~ ; =~~~~~ = = = = = S
— — V — —

- - I • - i - I

=
_ _ _ _ _ __ _

_ _ _ _ _ _

-

C.
_ _ _ _ _ _ _ _ _ _ _

C.
E

=
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Z

afl

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4
-

_ _ _ _ _

-

__ _ ___

0. :

=
~~~~~~~~~~~

-

----

-

_  -

-

=

- - H

— 
_

-~~~~~~ 

_ _ _ _  _ _ _ _7 -  - -/ - _ -  -

= 
-

~~~~~~ 

-
_ _ _

=

=
_ _ _ _ _ _ _

=

_ _ _ _ _ __ _

(si~ecj)
4-03-aUfl L

3-26

4 ; ; -
_ _

-~~~~~~~~~~~~~~~~~~~ sØ
- —~.~~~~~ . - — - - - • —

~~j ~~

_ _ _ _ - — -H- - ~~~ -
-
~~~~ 

~~~~~~

—-- —- -

~~~~

---,-.--_-

~

- _

Table 3.4-1
Subsystem 1

NO. OF NO. OF , ERROR RAT E
TYPE MODULES LINES OF CODE NO. OF SPR S SPR ’S/lOO LOC

CONTROL 5 500 7 1.4

DATA
MANAGEMENT 13 3840 53 1.4

I/O 10 2060 33 1.6

PRE/POST 8 
-

PROCESSING - 
1270 6 .5

ALGORITHMIC 11 5520 62 1.1

t

TOTAL 47 13090 160 1.2

o p

3-27

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ % - - - ~~~~~~~ S~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—

~~~ -
- ~~~~~~~~~~~~~~~ - - 

H - H~~~~~HH~~~~~~~ - ~H 
-



__________________________ - - - H - ~—H-- - -
~~ 

- - -;-- —

—- -~-H - - - - --

r

Tabl e 3. 4-2
Subsystem 2 -

NO OF NO. OF ERROR RATE
TYPE MODULES LINES OF CODE NO. OF SPR ’S SPR ’S/lOO LOC

CONTROL 1 490 4 .8

— 

MANAGEMENT 18 7640 97 

— 

1.3

I/O 10 3840 41 1.1

PROCESSING 10 3710 32 .9 
-

ALGORITHMIC 2 1300 9 .7

TOTAL 41 16980 183 1 1

3-28 -
~~~~~~~~

p
- - — —— — —--H-H-~~~~—~~~~~~~~ - H

-

hIlL ~~~~~~~~~~~~~
-- H

~~~
.- - -.--. - -- - -~~~~ —~~

-
-
~---~~~~~

-- —
~~~~~~

— -
-~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

_______-

_

H
- -

-H-H - ~~~ -H
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ - ---—---H H
1~~~~~~~~~~

—
~~~. - - - . - —,  - -~~

. —

~~~r ‘r~ 
- - -~~~u’i-.~ _ _ _  - - -

I ~~~

Table 3.4-3
Subsystem 3

NO. OF NO. OF ERROR RATE
TYPE MODULES LINES OF CODE NO. OF SPR ’S SPR ’S/l OO LOC

CONTROL 5 2140 33 1.5

MANAGEMENT

- I/O 14 1200 14 1.2

PRE/POST 8 1900 18 9
PROCESSING 

.

ALGORITHMIC 2 1180 3 .3

SYSTEM 0 0 0 0

11~
TOTAL 51 11720 147

3-29

4



_________ ___________ - - - - -  ~~~-H ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —--H--- 
--  —

derived wi th the current error typology and data collection methodologies.
Before true normative val ues for software problems can be derived, more data
must be collected on more factors affecting software development.

I

HI
’

I
- 4 

—

3-30 4

— -• _ — - •
~~

•-H
~ ~~~~~~~~~~~~ ~ -I 

— -H—
~~~~~ ..--H7- — —-H-


_________ - ----- H - H --H ~~~~— - - —
_ _ _ _ _ -

I

I

4.0 FUTURE CONSIDERATIONS FOR RELIABILITY DATA COLLECTION
There is a great need in software rel iability theory for data collected from
actual software developments both to confirm existing models and suggest
additional models. Just as physical models are confi rmed by experimental
data, softwa re models must be confirmed by data taken from actual software
developments.

Data collected from small experimental projects cannot illustra te the experi-
ence of actual large scale software projects.

One of the most difficult aspects of major. software projects is coninunication
between the various groups invo lved in the development. Methods for the coor-
dination of the many diverse activities involved in major software develop-
ments are still being investigated. Only from actual software developments

can these problems be investigated.

Because of the high cost of data collection it is prohibitively expensive to
collect data to test a single hypothesis. Data collection has usually con-
sisted of collecting whatever was thought necessary or possible. As seen from
the coninents and analyses of the previous sections this has not always been
adequate.

In the future, attention should be paid to the type of analyses to be per-
formed. It is not sufficient to record only the most easily obtained informa-
tion, if this is insufficient to validate an hypothesis. The information not
collected is often the most tantalizing . Some of the items that should be
collected are given in Table 4.1-1 .

-
-

Further needs incl ude a better description of how data collection should be
performed. Classification of problems is often a difficul t task that could

be made easier by strong cri teria for the classification . An additional need
t —

is standard definitions of terminology. Only by using standard terminology

-
H~~~~~

I

can there be consistent interpretation 0f the results from different projects. H

L1~~ _

Ii “ - ~i~ ~~ ~~~~~
-
~
--

~~~~~~~~ ____



______________________________ ___________-
~~ -

~~ q~~~.....-. .-.— ~..I ~~~~~~~~~~ 
——

-

Table 4.1.1
Parariie-ters -for Data Collection

(1) System Description

(2) Duration of Each Phase
(3) Management Methods
(4) Design Methods
(5) Coding Methods
(6) Test Methods
(7) Types of Computers Used
(8) Languages Used

(9) General Module Description and Function
(10) Problems -for Each Module

a. Type
b. Method of Correction

c. Date of Occurrence
d. Criticality of Problem
e. Date of Cor rection
f. Difficul ty of Correction
g. Effects of Correction on Other Modules

h. Manpower Expended on Correction

(11) Structural Measures of Modules
- Module Length
- Sta tement Mix
- # of Variables
- Complexity

4-2

re — - — —---H——--- 
~~~~~~~~~~~~~~ 

_______________________________________ - - ._*- -

I_-H - - - - - _— --- ——--- -
~~~~~~~~ ::~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~~~~

~~~~~ 

-

One last coment on data collection that may now be made with current know-
ledge. One of the major factors infl uencing the quality of the data collected
is the motivation of the development team to provide the data. A motivating
infl uence is the usefulness of the data to the development team during the
development (i.e., real-time feedback). Thus it is important to make the
data col lection effort- beneficial to the developers as well as to the relia-

— t bility analyst. A vehicle to provide the benefits of the data col lection are
the preliminary baselines that have been established through this and other
studies.

I

4-3

—-- H 11lI1I -1I
__ 

1H_ _. —-- —- -a—---

~~~~~~~~~ - - -
-

_ _ _
H

—H - ~~~~~ ~~~
—

~~~~~~~
—--H—H— 

~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~ 
— —

~~~.
--
~A~~



- - H r ~~~~~~~
-;

~~~~H - -~~~~~~~~~~~~~~~ii - - 
-

~~~~~~~~~~

-
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— -- --
- _ _ _ _ _

1
I ;

REFERENCES

[BAKW77] Baker, W.F., “Software Data Collection and Analysis: A Real Time
System Project History ” , IBM Corporation , RADC-TR-77-l92, June 1977.
(A041 644)

[FRIM77] Fries, M.J., “Software Error Data Acqu isition ” , Boeing Aerospace
Company, RADC-TR-77-l30, April 1977. (A039916)

ILLOD77) Lloyd, 0., Lipow , M., Rel iability : Management, Methods~ and
Mathematics, Prentice-Hall Inc., Englewood Cl iffs, NJ, 1977.

[MCCJ77] McCall , J.A . , Richards , P.K., Wal ters , G.F. , “Factors in Software
Qual ity - Concepts and Definitions of Software Quality ”. General
Elec tric Company, RADC-TR-77-369, Vol I, November 1977. (A049014)

[MOTR77] Motley , R.W., Brooks , W.D., “Statistical Prediction of Programing
Errors ” , IBM Corporation , RADC-TR-77—1 75 , May 1977. (A04l106)

[MYEG76] Myers , G., Software Reliability : Principles and Practices,
.‘-ohn Wiley & Sons , NY , 1976.

[NELR78] Nelson , R., “Software Data Collection and Analysis (Draft-Partial
Report)”, RADC, September 1978.

[RYEP77] Rye , P. , et al , “Software Systems Development: A CSDL Project
History” , The Charles Stark Draper Laboratory, Inc.
RADC-TR-77-2l3, June 1977. (A042l86)

[THAT76J Thayer , l.A. , et al , “Software Reliability Study”. TRW Defense
and Space Systems Group, RADC-TR- 76-238 , August 1976. (A030798)

[W1LH77] Willman , H.E. , Jr. , “Software Systems Reliability: A Raytheon
Project History” , Raytheon Company, RADC-TR- 77-l88, June 1977.
(A040992)

[W01R74] Wolverton, R.W . , “The Cost of Developing Large-Scale Software” ,
IEEE Trans. on Computers, Vol C-23, No. 6, June 1974, pp 615-636.

R-l H

— -
- ~~. - —— — w- - —— —~

-H - -

LH, ~~~~~~~~~ ~~~
—

~~~~
——--- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~
- -

-

~~~~~~~~~~~~~
-=

~~~~~~~~~~
-
—

~~~~~



i1rTi~- T~—~ ~~~~~~~~~~~

— — ±
~~= — - - - - - -  —- --__ 

-

Appendix A

AID Analysis for Project 1 Structural Data

The Automatic Interaction Dectector Program (AID) is a statistical technique
used to identify interaction between several independent variables and a
dependent variable. The method is based on successive splitting on the

variable which decreases the variance of the dependent variable the most.
The method is explained in [SONJ64]* . The result of the analysis is a tree
of the binary splittings.

The method was applied to the data in the Project 1 data base. The goal was
to achieve a better understanding of the interaction of the var ious structural
parameters given in this report. These parameters are listed in Table A-l.

The parameters given in Table A-l are not the ideal parameters to use for
this method of analysis. Ideally the parameters should not have been pre-
viously weighted. For instance the “IF” complexity would be better replaced
by a simple count of the number of “IFs ” .

The resul ts of the analysis is given in Figure A—l. The first division is on
executable statements. The modules below 700 executable statements have
far fewer problems than those with more than 700 executable statements. The

next division of the modules with less than 700 executable statements is on
the number of data handling statements. Again there is a major difference
between modules with more than 100 data handling statements and those with I.
fewer.

*See Reference following page A-4.

HI-

t ~~~~

i 

A-~

~e- ~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ‘~~~~~~

-‘-‘
~~~~~~~~~

‘ 
- - 

-

—H-’—--- — — — ~~~~~~~~~~~~~~~ ~~~ &H 4 ~~~~~~~~II~ ’—S ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~



- - -- -H — - - - -  

-- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— — - — - - - ---

~~~~~~~~~~~::i ~~~~~~ - - -H— -- — 
—

‘.9
N.

m ~~ u.* m N.

II 1* Z II N II II

Z I 0. 
— 

*0. ~~ C.

z —0
_ _ _ _ _— _ _ _ _ _  _ _ _ _ _IJJI-

_ 
__  _  

H

_ _ _  _ _ _  _ _ _  
~~~~~~~~~~~ ~~~~~~~~~

II N II II U,
Z *0.

~~~~ Z I C. E
_J I— a)

C

CI’ ”,

c~~~ o; -~~~~~~~~~~E a)
II II =

II II

Lu IC..

LU

A-2

--‘ —--H-H - -~~~~~~~~~~- - 
_ _  _ _ _ _ _ _ _  _ _ _ _



~ ~~~~~~~~~~~~~~~~~~ ~ H - H  -

1-i

Table A-l
Aid Parameters

(1) Total Routine Statement

(2) Loop Complexi ty, which is defined as:

Emj w 1 where

wj  41 1  j...
40~~~1 s o t hat

W j a 1  and

mj ~ number of loops in routine at Indentation or
nesting level i

wi weighting factor

Q • maximum level of indentation in the system

4 • sha ping value

(3) IF complexi ty, which is defined as:

where
ni • number of IFs in routine at Indentation or

nesting level i

weighting factor ( the same as for loep
complexity)

(4) Total Routine Branches

(5) Logical Statements (IF , ORIF , IFEITH)

I
A-3

• E4H -I~~~~~ -J - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I- ~~~~~~~~~~~~~~~~~ - -H— - — — — 
,—
~

p-•—..—-.—.— ~~~~~~ 
-
~~~~~ ~~~~~~ 

—
~

-
~~~~ ~~ ~~~~~~~~~~~~~~~~~ 4.



- 
—

Table A-l
Aid Parameters (Continued)

(6) Di rect routine interfaces wi th other applications routines
(not a count of calls to other routines).

(7) DIrect rout ine interfaces w ith opera ting system or system
support routines (not a Count of calls to system routines .

(8) RoutIne input/output statements

(9) Routine computat ional statements

(10) Routine data handling statements

(11) RoutIne nonexecutable statements

(12) Routine executable statements —

(13) Total Interfaces with other routines

(14) Total routine coninents

H 

4

4

A-4

— — — — 
-



_ _ _  -

APPENDIX REFERENCE

1 
[SONJ64] Sonquist, J.C., Morgan, J.N., the Detection of Interaction

Effects , Monograph No. 35, Survey Research Center Institute
- for Social Research, The University of Michigan , 1964.

t

- 1 - -

AR-l

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - H - H _ - H _H-HH~~

— . — — —j~~ ~
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~


